project21 commited on
Commit
ae95c81
·
verified ·
1 Parent(s): c99cea4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +210 -0
app.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tensorflow.keras.utils import img_to_array,load_img
3
+ from keras.models import load_model
4
+ import numpy as np
5
+
6
+ # Load the pre-trained model from the local path
7
+ model_path = 'citrus.h5'
8
+ model = load_model(model_path) # Load the model here
9
+
10
+ def predict_disease(image_file, model, all_labels):
11
+
12
+ try:
13
+ # Load and preprocess the image
14
+ img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
15
+ img_array = img_to_array(img)
16
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
17
+ img_array = img_array / 255.0 # Normalize the image
18
+
19
+ # Predict the class
20
+ predictions = model.predict(img_array) # Use the loaded model here
21
+ predicted_class = np.argmax(predictions[0])
22
+
23
+ # Get the predicted class label
24
+ predicted_label = all_labels[predicted_class]
25
+
26
+ # Print the predicted label to the console
27
+
28
+ if predicted_label=='Citrus Healthy':
29
+ predicted_label = predicted_label = """<h3 align="center">Citrus Healthy</h3><br><br>
30
+ <center>No need use Pesticides</center>"""
31
+ elif predicted_label=='Citrus Greening':
32
+ predicted_label = """
33
+ <style>
34
+ li{
35
+ font-size: 15px;
36
+ margin-left: 90px;
37
+ margin-top: 15px;
38
+ margin-bottom: 15px;
39
+ }
40
+ h4{
41
+ font-size: 17px;
42
+ margin-top: 15px;
43
+ }
44
+ h4:hover{
45
+ cursor: pointer;
46
+ }
47
+
48
+ h3:hover{
49
+ cursor: pointer;
50
+ color: blue;
51
+ transform: scale(1.3);
52
+ }
53
+ .note{
54
+ text-align: center;
55
+ font-size: 16px;
56
+ }
57
+ p{
58
+ font-size: 13px;
59
+ text-align: center;
60
+ }
61
+
62
+ </style>
63
+ <h3><center><b>Citrus Greening</b></center></h3>
64
+ <h4>PESTICIDES TO BE USED:</h4>
65
+ <ul>
66
+ <li>1. Oxytetracycline (Terramycin)</li>
67
+ <li>2. Streptomycin (Streptomycin sulfate)</li>
68
+ <li>3. Mancozeb (Dithane)</li>
69
+ <li>4. Copper oxychloride (Kocide)</li>
70
+
71
+
72
+
73
+ </ul>
74
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
75
+ <p>Be sure to follow local regulations and guidelines for application</p>
76
+
77
+
78
+ """
79
+ elif predicted_label=='Citrus Canker':
80
+ predicted_label = """
81
+ <style>
82
+ li{
83
+ font-size: 15px;
84
+ margin-left: 90px;
85
+ margin-top: 15px;
86
+ margin-bottom: 15px;
87
+ }
88
+ h4{
89
+ font-size: 17px;
90
+ margin-top: 15px;
91
+ }
92
+ h4:hover{
93
+ cursor: pointer;
94
+ }
95
+
96
+ h3:hover{
97
+ cursor: pointer;
98
+ color: blue;
99
+ transform: scale(1.3);
100
+ }
101
+ .note{
102
+ text-align: center;
103
+ font-size: 16px;
104
+ }
105
+ p{
106
+ font-size: 13px;
107
+ text-align: center;
108
+ }
109
+
110
+ </style>
111
+ <h3><center><b>Citrus Canker</b></center></h3>
112
+ <h4>PESTICIDES TO BE USED:</h4>
113
+ <ul>
114
+ <li>1. Oxytetracycline (Terramycin)</li>
115
+ <li>2. Streptomycin (Streptomycin sulfate)</li>
116
+ <li>3. Mancozeb (Dithane)</li>
117
+ <li>4. Copper oxychloride (Kocide)</li>
118
+ <li>5. Azoxystrobin (Heritage)</li>
119
+
120
+
121
+ </ul>
122
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
123
+ <p>Be sure to follow local regulations and guidelines for application</p>
124
+
125
+
126
+ """
127
+ elif predicted_label=='Citrus Black Spot':
128
+ predicted_label = """
129
+ <style>
130
+ li{
131
+ font-size: 15px;
132
+ margin-left: 90px;
133
+ margin-top: 15px;
134
+ margin-bottom: 15px;
135
+ }
136
+ h4{
137
+ font-size: 17px;
138
+ margin-top: 15px;
139
+ }
140
+ h4:hover{
141
+ cursor: pointer;
142
+ }
143
+
144
+ h3:hover{
145
+ cursor: pointer;
146
+ color: blue;
147
+ transform: scale(1.3);
148
+ }
149
+ .note{
150
+ text-align: center;
151
+ font-size: 16px;
152
+ }
153
+ p{
154
+ font-size: 13px;
155
+ text-align: center;
156
+ }
157
+
158
+ </style>
159
+ <h3><center><b>Citrus Black Spot</b></center></h3>
160
+ <h4>PESTICIDES TO BE USED:</h4>
161
+ <ul>
162
+ <li>1. Propiconazole (Tilt)</li>
163
+ <li>2. Chlorothalonil (Daconil)</li>
164
+ <li>3. Mancozeb (Dithane)</li>
165
+ <li>4. Azoxystrobin (Heritage)</li>
166
+ <li>5. Pyraclostrobin (Cabrio)</li>
167
+
168
+
169
+ </ul>
170
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
171
+ <p>Be sure to follow local regulations and guidelines for application</p>
172
+
173
+
174
+ """
175
+
176
+
177
+
178
+ else:
179
+ predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
180
+ """
181
+
182
+ return predicted_label
183
+
184
+
185
+ except Exception as e:
186
+ print(f"Error: {e}")
187
+ return None
188
+
189
+ # List of class labels
190
+ all_labels = [
191
+ 'Citrus Greening',
192
+ 'Citrus Canker',
193
+ 'Citrus Healthy','Citrus Black Spot'
194
+ ]
195
+
196
+ # Define the Gradio interface
197
+ def gradio_predict(image_file):
198
+ return predict_disease(image_file, model, all_labels) # Pass the model to the function
199
+
200
+ # Create a Gradio interface
201
+ gr_interface = gr.Interface(
202
+ fn=gradio_predict, # Function to call for predictions
203
+ inputs=gr.Image(type="filepath"), # Upload image as file path
204
+ outputs="html", # Output will be the class label as text
205
+ title="Citrus Disease Predictor",
206
+ description="Upload an image of a plant to predict the disease.",
207
+ )
208
+
209
+ # Launch the Gradio app
210
+ gr_interface.launch(share=True)