Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from tensorflow.keras.utils import img_to_array,load_img
|
| 3 |
+
from keras.models import load_model
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# Load the pre-trained model from the local path
|
| 7 |
+
model_path = 'citrus.h5'
|
| 8 |
+
model = load_model(model_path) # Load the model here
|
| 9 |
+
|
| 10 |
+
def predict_disease(image_file, model, all_labels):
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
# Load and preprocess the image
|
| 14 |
+
img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
|
| 15 |
+
img_array = img_to_array(img)
|
| 16 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
| 17 |
+
img_array = img_array / 255.0 # Normalize the image
|
| 18 |
+
|
| 19 |
+
# Predict the class
|
| 20 |
+
predictions = model.predict(img_array) # Use the loaded model here
|
| 21 |
+
predicted_class = np.argmax(predictions[0])
|
| 22 |
+
|
| 23 |
+
# Get the predicted class label
|
| 24 |
+
predicted_label = all_labels[predicted_class]
|
| 25 |
+
|
| 26 |
+
# Print the predicted label to the console
|
| 27 |
+
|
| 28 |
+
if predicted_label=='Citrus Healthy':
|
| 29 |
+
predicted_label = predicted_label = """<h3 align="center">Citrus Healthy</h3><br><br>
|
| 30 |
+
<center>No need use Pesticides</center>"""
|
| 31 |
+
elif predicted_label=='Citrus Greening':
|
| 32 |
+
predicted_label = """
|
| 33 |
+
<style>
|
| 34 |
+
li{
|
| 35 |
+
font-size: 15px;
|
| 36 |
+
margin-left: 90px;
|
| 37 |
+
margin-top: 15px;
|
| 38 |
+
margin-bottom: 15px;
|
| 39 |
+
}
|
| 40 |
+
h4{
|
| 41 |
+
font-size: 17px;
|
| 42 |
+
margin-top: 15px;
|
| 43 |
+
}
|
| 44 |
+
h4:hover{
|
| 45 |
+
cursor: pointer;
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
h3:hover{
|
| 49 |
+
cursor: pointer;
|
| 50 |
+
color: blue;
|
| 51 |
+
transform: scale(1.3);
|
| 52 |
+
}
|
| 53 |
+
.note{
|
| 54 |
+
text-align: center;
|
| 55 |
+
font-size: 16px;
|
| 56 |
+
}
|
| 57 |
+
p{
|
| 58 |
+
font-size: 13px;
|
| 59 |
+
text-align: center;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
</style>
|
| 63 |
+
<h3><center><b>Citrus Greening</b></center></h3>
|
| 64 |
+
<h4>PESTICIDES TO BE USED:</h4>
|
| 65 |
+
<ul>
|
| 66 |
+
<li>1. Oxytetracycline (Terramycin)</li>
|
| 67 |
+
<li>2. Streptomycin (Streptomycin sulfate)</li>
|
| 68 |
+
<li>3. Mancozeb (Dithane)</li>
|
| 69 |
+
<li>4. Copper oxychloride (Kocide)</li>
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
</ul>
|
| 74 |
+
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 75 |
+
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
"""
|
| 79 |
+
elif predicted_label=='Citrus Canker':
|
| 80 |
+
predicted_label = """
|
| 81 |
+
<style>
|
| 82 |
+
li{
|
| 83 |
+
font-size: 15px;
|
| 84 |
+
margin-left: 90px;
|
| 85 |
+
margin-top: 15px;
|
| 86 |
+
margin-bottom: 15px;
|
| 87 |
+
}
|
| 88 |
+
h4{
|
| 89 |
+
font-size: 17px;
|
| 90 |
+
margin-top: 15px;
|
| 91 |
+
}
|
| 92 |
+
h4:hover{
|
| 93 |
+
cursor: pointer;
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
h3:hover{
|
| 97 |
+
cursor: pointer;
|
| 98 |
+
color: blue;
|
| 99 |
+
transform: scale(1.3);
|
| 100 |
+
}
|
| 101 |
+
.note{
|
| 102 |
+
text-align: center;
|
| 103 |
+
font-size: 16px;
|
| 104 |
+
}
|
| 105 |
+
p{
|
| 106 |
+
font-size: 13px;
|
| 107 |
+
text-align: center;
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
</style>
|
| 111 |
+
<h3><center><b>Citrus Canker</b></center></h3>
|
| 112 |
+
<h4>PESTICIDES TO BE USED:</h4>
|
| 113 |
+
<ul>
|
| 114 |
+
<li>1. Oxytetracycline (Terramycin)</li>
|
| 115 |
+
<li>2. Streptomycin (Streptomycin sulfate)</li>
|
| 116 |
+
<li>3. Mancozeb (Dithane)</li>
|
| 117 |
+
<li>4. Copper oxychloride (Kocide)</li>
|
| 118 |
+
<li>5. Azoxystrobin (Heritage)</li>
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
</ul>
|
| 122 |
+
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 123 |
+
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
"""
|
| 127 |
+
elif predicted_label=='Citrus Black Spot':
|
| 128 |
+
predicted_label = """
|
| 129 |
+
<style>
|
| 130 |
+
li{
|
| 131 |
+
font-size: 15px;
|
| 132 |
+
margin-left: 90px;
|
| 133 |
+
margin-top: 15px;
|
| 134 |
+
margin-bottom: 15px;
|
| 135 |
+
}
|
| 136 |
+
h4{
|
| 137 |
+
font-size: 17px;
|
| 138 |
+
margin-top: 15px;
|
| 139 |
+
}
|
| 140 |
+
h4:hover{
|
| 141 |
+
cursor: pointer;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
h3:hover{
|
| 145 |
+
cursor: pointer;
|
| 146 |
+
color: blue;
|
| 147 |
+
transform: scale(1.3);
|
| 148 |
+
}
|
| 149 |
+
.note{
|
| 150 |
+
text-align: center;
|
| 151 |
+
font-size: 16px;
|
| 152 |
+
}
|
| 153 |
+
p{
|
| 154 |
+
font-size: 13px;
|
| 155 |
+
text-align: center;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
</style>
|
| 159 |
+
<h3><center><b>Citrus Black Spot</b></center></h3>
|
| 160 |
+
<h4>PESTICIDES TO BE USED:</h4>
|
| 161 |
+
<ul>
|
| 162 |
+
<li>1. Propiconazole (Tilt)</li>
|
| 163 |
+
<li>2. Chlorothalonil (Daconil)</li>
|
| 164 |
+
<li>3. Mancozeb (Dithane)</li>
|
| 165 |
+
<li>4. Azoxystrobin (Heritage)</li>
|
| 166 |
+
<li>5. Pyraclostrobin (Cabrio)</li>
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
</ul>
|
| 170 |
+
<p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
|
| 171 |
+
<p>Be sure to follow local regulations and guidelines for application</p>
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
else:
|
| 179 |
+
predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
|
| 180 |
+
"""
|
| 181 |
+
|
| 182 |
+
return predicted_label
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"Error: {e}")
|
| 187 |
+
return None
|
| 188 |
+
|
| 189 |
+
# List of class labels
|
| 190 |
+
all_labels = [
|
| 191 |
+
'Citrus Greening',
|
| 192 |
+
'Citrus Canker',
|
| 193 |
+
'Citrus Healthy','Citrus Black Spot'
|
| 194 |
+
]
|
| 195 |
+
|
| 196 |
+
# Define the Gradio interface
|
| 197 |
+
def gradio_predict(image_file):
|
| 198 |
+
return predict_disease(image_file, model, all_labels) # Pass the model to the function
|
| 199 |
+
|
| 200 |
+
# Create a Gradio interface
|
| 201 |
+
gr_interface = gr.Interface(
|
| 202 |
+
fn=gradio_predict, # Function to call for predictions
|
| 203 |
+
inputs=gr.Image(type="filepath"), # Upload image as file path
|
| 204 |
+
outputs="html", # Output will be the class label as text
|
| 205 |
+
title="Citrus Disease Predictor",
|
| 206 |
+
description="Upload an image of a plant to predict the disease.",
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Launch the Gradio app
|
| 210 |
+
gr_interface.launch(share=True)
|