Tiny-VLMs-Lab / app.py
prithivMLmods's picture
Update app.py
4148e9b verified
raw
history blame
22.3 kB
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import fitz # PyMuPDF
import gradio as gr
import requests
import torch
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
# Utility Functions
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 3136,
max_pixels: int = 11289600,
):
"""Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio."""
if max(height, width) / min(height, width) > 200:
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
"""Fetch and process an image."""
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels is not None or max_pixels is not None:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(
image.height,
image.width,
factor=IMAGE_FACTOR,
min_pixels=min_pixels,
max_pixels=max_pixels
)
image = image.resize((width, height), Image.LANCZOS)
return image
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
"""Load images from PDF file."""
images = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
image = Image.open(BytesIO(img_data)).convert('RGB')
images.append(image)
pdf_document.close()
except Exception as e:
print(f"Error loading PDF: {e}")
return []
return images
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
"""Draw layout bounding boxes on image."""
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
colors = {
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD',
'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8',
'Text': '#74B9FF', 'Title': '#E17055'
}
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default()
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox = item['bbox']
category = item['category']
color = colors.get(category, '#000000')
draw.rectangle(bbox, outline=color, width=2)
label = category
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2)
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
except Exception as e:
print(f"Error drawing layout: {e}")
return img_copy
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
"""Convert layout JSON to markdown format."""
import base64
markdown_lines = []
try:
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture' and bbox and len(bbox) == 4:
try:
x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))]
if x2 > x1 and y2 > y1:
cropped_img = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
else:
markdown_lines.append("![Image](Image region detected)\n")
except Exception as e:
print(f"Error processing image region: {e}")
markdown_lines.append("![Image](Image detected)\n")
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table':
markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n")
elif category == 'Formula':
markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category in ['Page-header', 'Page-footer']:
continue
else:
markdown_lines.append(f"{text}\n")
markdown_lines.append("")
except Exception as e:
print(f"Error converting to markdown: {e}")
return str(layout_data)
return "\n".join(markdown_lines)
# Load Models
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load dot.ocr
model_id = "rednote-hilab/dots.ocr"
model_path = "./models/dots-ocr-local"
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
model = AutoModelForCausalLM.from_pretrained(
model_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Model Dictionary
model_dict = {
"dot.ocr": {"model": model, "processor": processor, "process_layout": True},
"Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False},
"Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False},
}
# Global State
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
@spaces.GPU()
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
"""Run inference on an image with the given prompt using the specified model and processor."""
try:
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
return output_text[0] if output_text else ""
except Exception as e:
print(f"Error during inference: {e}")
traceback.print_exc()
return f"Error during inference: {str(e)}"
def process_image(
image: Image.Image,
model,
processor,
process_layout: bool,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None
) -> Dict[str, Any]:
"""Process a single image with the specified model and processor."""
try:
if min_pixels is not None or max_pixels is not None:
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
raw_output = inference(model, processor, image, prompt)
result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output}
if process_layout:
try:
layout_data = json.loads(raw_output)
result['layout_result'] = layout_data
result['processed_image'] = draw_layout_on_image(image, layout_data)
result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text')
except json.JSONDecodeError:
print("Failed to parse JSON output, using raw output")
except Exception as e:
print(f"Error processing layout: {e}")
return result
except Exception as e:
print(f"Error processing image: {e}")
traceback.print_exc()
return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)}
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
"""Load file for preview (supports PDF and images)."""
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.pdf':
images = load_images_from_pdf(file_path)
if not images:
return None, "Failed to load PDF"
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []})
return images[0], f"Page 1 / {len(images)}"
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
image = Image.open(file_path).convert('RGB')
pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []})
return image, "Page 1 / 1"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
"""Navigate through PDF pages and update outputs."""
global pdf_cache
if not pdf_cache["images"]:
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
index = pdf_cache["current_page"]
current_image_preview = pdf_cache["images"][index]
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
markdown_content, processed_img, layout_json = "Page not processed yet", None, None
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]:
result = pdf_cache["results"][index]
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
processed_img = result.get('processed_image')
layout_json = result.get('layout_result')
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
def create_gradio_interface():
"""Create the Gradio interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button {
border: none !important;
color: white !important;
font-weight: bold !important;
background-color: blue !important;}
.process-button:hover {
background-color: darkblue !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">●</span>OCR Comparator</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image/PDF to markdown document processing
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"],
label="Select Model",
value="dot.ocr"
)
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
with gr.Row():
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
with gr.Row():
prev_page_btn = gr.Button("◀ Previous", size="md")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next ▶", size="md")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("🖼️ Processed Image"):
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
with gr.Tab("📝 Extracted Content"):
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
with gr.Tab("📋 Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results", value=None)
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
"""Process the uploaded document with the selected model."""
global pdf_cache
if not file_path:
return None, "Please upload a file first.", None
if model_choice not in model_dict:
return None, "Invalid model selected", None
selected_model = model_dict[model_choice]["model"]
selected_processor = model_dict[model_choice]["processor"]
process_layout = model_dict[model_choice]["process_layout"]
image, page_info = load_file_for_preview(file_path)
if image is None:
return None, page_info, None
if pdf_cache["file_type"] == "pdf":
all_results, all_markdown = [], []
for i, img in enumerate(pdf_cache["images"]):
result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
all_results.append(result)
if result.get('markdown_content'):
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
pdf_cache["results"] = all_results
pdf_cache["is_parsed"] = True
first_result = all_results[0]
return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result']
else:
result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
pdf_cache["results"] = [result]
pdf_cache["is_parsed"] = True
return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result']
def handle_file_upload(file_path):
image, page_info = load_file_for_preview(file_path)
return image, page_info
def clear_all():
global pdf_cache
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output])
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output])
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=False, debug=True, show_error=True)