Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
import torch | |
from huggingface_hub import snapshot_download | |
from PIL import Image, ImageDraw, ImageFont | |
from qwen_vl_utils import process_vision_info | |
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration | |
# Constants | |
MIN_PIXELS = 3136 | |
MAX_PIXELS = 11289600 | |
IMAGE_FACTOR = 28 | |
# Prompts | |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: Format its text as HTML. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object. | |
""" | |
# Utility Functions | |
def round_by_factor(number: int, factor: int) -> int: | |
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" | |
return round(number / factor) * factor | |
def smart_resize( | |
height: int, | |
width: int, | |
factor: int = 28, | |
min_pixels: int = 3136, | |
max_pixels: int = 11289600, | |
): | |
"""Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio.""" | |
if max(height, width) / min(height, width) > 200: | |
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}") | |
h_bar = max(factor, round_by_factor(height, factor)) | |
w_bar = max(factor, round_by_factor(width, factor)) | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar = round_by_factor(height / beta, factor) | |
w_bar = round_by_factor(width / beta, factor) | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar = round_by_factor(height * beta, factor) | |
w_bar = round_by_factor(width * beta, factor) | |
return h_bar, w_bar | |
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None): | |
"""Fetch and process an image.""" | |
if isinstance(image_input, str): | |
if image_input.startswith(("http://", "https://")): | |
response = requests.get(image_input) | |
image = Image.open(BytesIO(response.content)).convert('RGB') | |
else: | |
image = Image.open(image_input).convert('RGB') | |
elif isinstance(image_input, Image.Image): | |
image = image_input.convert('RGB') | |
else: | |
raise ValueError(f"Invalid image input type: {type(image_input)}") | |
if min_pixels is not None or max_pixels is not None: | |
min_pixels = min_pixels or MIN_PIXELS | |
max_pixels = max_pixels or MAX_PIXELS | |
height, width = smart_resize( | |
image.height, | |
image.width, | |
factor=IMAGE_FACTOR, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels | |
) | |
image = image.resize((width, height), Image.LANCZOS) | |
return image | |
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]: | |
"""Load images from PDF file.""" | |
images = [] | |
try: | |
pdf_document = fitz.open(pdf_path) | |
for page_num in range(len(pdf_document)): | |
page = pdf_document.load_page(page_num) | |
mat = fitz.Matrix(2.0, 2.0) # Increase resolution | |
pix = page.get_pixmap(matrix=mat) | |
img_data = pix.tobytes("ppm") | |
image = Image.open(BytesIO(img_data)).convert('RGB') | |
images.append(image) | |
pdf_document.close() | |
except Exception as e: | |
print(f"Error loading PDF: {e}") | |
return [] | |
return images | |
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image: | |
"""Draw layout bounding boxes on image.""" | |
img_copy = image.copy() | |
draw = ImageDraw.Draw(img_copy) | |
colors = { | |
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', | |
'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', | |
'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8', | |
'Text': '#74B9FF', 'Title': '#E17055' | |
} | |
try: | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default() | |
for item in layout_data: | |
if 'bbox' in item and 'category' in item: | |
bbox = item['bbox'] | |
category = item['category'] | |
color = colors.get(category, '#000000') | |
draw.rectangle(bbox, outline=color, width=2) | |
label = category | |
label_bbox = draw.textbbox((0, 0), label, font=font) | |
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1] | |
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2) | |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color) | |
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font) | |
except Exception as e: | |
print(f"Error drawing layout: {e}") | |
return img_copy | |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: | |
"""Convert layout JSON to markdown format.""" | |
import base64 | |
markdown_lines = [] | |
try: | |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
for item in sorted_items: | |
category = item.get('category', '') | |
text = item.get(text_key, '') | |
bbox = item.get('bbox', []) | |
if category == 'Picture' and bbox and len(bbox) == 4: | |
try: | |
x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))] | |
if x2 > x1 and y2 > y1: | |
cropped_img = image.crop((x1, y1, x2, y2)) | |
buffer = BytesIO() | |
cropped_img.save(buffer, format='PNG') | |
img_data = base64.b64encode(buffer.getvalue()).decode() | |
markdown_lines.append(f"\n") | |
else: | |
markdown_lines.append("\n") | |
except Exception as e: | |
print(f"Error processing image region: {e}") | |
markdown_lines.append("\n") | |
elif not text: | |
continue | |
elif category == 'Title': | |
markdown_lines.append(f"# {text}\n") | |
elif category == 'Section-header': | |
markdown_lines.append(f"## {text}\n") | |
elif category == 'Text': | |
markdown_lines.append(f"{text}\n") | |
elif category == 'List-item': | |
markdown_lines.append(f"- {text}\n") | |
elif category == 'Table': | |
markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n") | |
elif category == 'Formula': | |
markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n") | |
elif category == 'Caption': | |
markdown_lines.append(f"*{text}*\n") | |
elif category == 'Footnote': | |
markdown_lines.append(f"^{text}^\n") | |
elif category in ['Page-header', 'Page-footer']: | |
continue | |
else: | |
markdown_lines.append(f"{text}\n") | |
markdown_lines.append("") | |
except Exception as e: | |
print(f"Error converting to markdown: {e}") | |
return str(layout_data) | |
return "\n".join(markdown_lines) | |
# Load Models | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load dot.ocr | |
model_id = "rednote-hilab/dots.ocr" | |
model_path = "./models/dots-ocr-local" | |
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) | |
# Load Camel-Doc-OCR-062825 | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Load Megalodon-OCR-Sync-0713 | |
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to(device).eval() | |
# Model Dictionary | |
model_dict = { | |
"dot.ocr": {"model": model, "processor": processor, "process_layout": True}, | |
"Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False}, | |
"Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False}, | |
} | |
# Global State | |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []} | |
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str: | |
"""Run inference on an image with the given prompt using the specified model and processor.""" | |
try: | |
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
return output_text[0] if output_text else "" | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
traceback.print_exc() | |
return f"Error during inference: {str(e)}" | |
def process_image( | |
image: Image.Image, | |
model, | |
processor, | |
process_layout: bool, | |
min_pixels: Optional[int] = None, | |
max_pixels: Optional[int] = None | |
) -> Dict[str, Any]: | |
"""Process a single image with the specified model and processor.""" | |
try: | |
if min_pixels is not None or max_pixels is not None: | |
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels) | |
raw_output = inference(model, processor, image, prompt) | |
result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output} | |
if process_layout: | |
try: | |
layout_data = json.loads(raw_output) | |
result['layout_result'] = layout_data | |
result['processed_image'] = draw_layout_on_image(image, layout_data) | |
result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text') | |
except json.JSONDecodeError: | |
print("Failed to parse JSON output, using raw output") | |
except Exception as e: | |
print(f"Error processing layout: {e}") | |
return result | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
traceback.print_exc() | |
return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)} | |
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]: | |
"""Load file for preview (supports PDF and images).""" | |
global pdf_cache | |
if not file_path or not os.path.exists(file_path): | |
return None, "No file selected" | |
file_ext = os.path.splitext(file_path)[1].lower() | |
try: | |
if file_ext == '.pdf': | |
images = load_images_from_pdf(file_path) | |
if not images: | |
return None, "Failed to load PDF" | |
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []}) | |
return images[0], f"Page 1 / {len(images)}" | |
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: | |
image = Image.open(file_path).convert('RGB') | |
pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []}) | |
return image, "Page 1 / 1" | |
else: | |
return None, f"Unsupported file format: {file_ext}" | |
except Exception as e: | |
print(f"Error loading file: {e}") | |
return None, f"Error loading file: {str(e)}" | |
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]: | |
"""Navigate through PDF pages and update outputs.""" | |
global pdf_cache | |
if not pdf_cache["images"]: | |
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None | |
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1) | |
index = pdf_cache["current_page"] | |
current_image_preview = pdf_cache["images"][index] | |
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>' | |
markdown_content, processed_img, layout_json = "Page not processed yet", None, None | |
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]: | |
result = pdf_cache["results"][index] | |
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available') | |
processed_img = result.get('processed_image') | |
layout_json = result.get('layout_result') | |
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json | |
def create_gradio_interface(): | |
"""Create the Gradio interface.""" | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } | |
.process-button { | |
border: none !important; | |
color: white !important; | |
font-weight: bold !important; | |
background-color: blue !important;} | |
.process-button:hover { | |
background-color: darkblue !important; | |
transform: translateY(-2px) !important; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; } | |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; } | |
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; } | |
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; } | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo: | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>Dot<span style="color: red;">●</span>OCR Comparator</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Advanced vision-language model for image/PDF to markdown document processing | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
model_choice = gr.Radio( | |
choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"], | |
label="Select Model", | |
value="dot.ocr" | |
) | |
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath") | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"], | |
inputs=file_input, | |
label="Example Documents" | |
) | |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300) | |
with gr.Row(): | |
prev_page_btn = gr.Button("◀ Previous", size="md") | |
page_info = gr.HTML('<div class="page-info">No file loaded</div>') | |
next_page_btn = gr.Button("Next ▶", size="md") | |
with gr.Accordion("Advanced Settings", open=False): | |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens") | |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels") | |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels") | |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg") | |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary") | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("🖼️ Processed Image"): | |
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500) | |
with gr.Tab("📝 Extracted Content"): | |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500) | |
with gr.Tab("📋 Layout JSON"): | |
json_output = gr.JSON(label="Layout Analysis Results", value=None) | |
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix): | |
"""Process the uploaded document with the selected model.""" | |
global pdf_cache | |
if not file_path: | |
return None, "Please upload a file first.", None | |
if model_choice not in model_dict: | |
return None, "Invalid model selected", None | |
selected_model = model_dict[model_choice]["model"] | |
selected_processor = model_dict[model_choice]["processor"] | |
process_layout = model_dict[model_choice]["process_layout"] | |
image, page_info = load_file_for_preview(file_path) | |
if image is None: | |
return None, page_info, None | |
if pdf_cache["file_type"] == "pdf": | |
all_results, all_markdown = [], [] | |
for i, img in enumerate(pdf_cache["images"]): | |
result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None) | |
all_results.append(result) | |
if result.get('markdown_content'): | |
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}") | |
pdf_cache["results"] = all_results | |
pdf_cache["is_parsed"] = True | |
first_result = all_results[0] | |
return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result'] | |
else: | |
result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None) | |
pdf_cache["results"] = [result] | |
pdf_cache["is_parsed"] = True | |
return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result'] | |
def handle_file_upload(file_path): | |
image, page_info = load_file_for_preview(file_path) | |
return image, page_info | |
def clear_all(): | |
global pdf_cache | |
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []} | |
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None | |
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info]) | |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output]) | |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output]) | |
process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output]) | |
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.queue(max_size=50).launch(share=False, debug=True, show_error=True) |