Tiny-VLMs-Lab / app.py
prithivMLmods's picture
Update app.py
888b5aa verified
raw
history blame
12 kB
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
from threading import Thread
import time
import gradio as gr
import requests
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
MAX_INPUT_TOKEN_LENGTH = 4096
device = "cuda" if torch.cuda.is_available() else "cpu"
# Prompt for Layout Analysis
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
# Load Models
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
).to(device).eval()
# Utility functions
def is_arabic_text(text: str) -> bool:
"""Check if text contains mostly Arabic characters."""
if not text:
return False
# Simplified check for Arabic characters in the given text
arabic_chars = 0
total_chars = 0
for char in text:
if char.isalpha():
total_chars += 1
if '\u0600' <= char <= '\u06FF':
arabic_chars += 1
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
"""Convert layout JSON to markdown format."""
import base64
from io import BytesIO
markdown_lines = []
try:
# Sort items by reading order (top to bottom, left to right)
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture':
if bbox and len(bbox) == 4:
try:
x1, y1, x2, y2 = [int(coord) for coord in bbox]
cropped_img = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
except Exception as e:
markdown_lines.append("![Image](Image region detected)\n")
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table' and text.strip().startswith('<'):
markdown_lines.append(f"{text}\n")
elif category == 'Formula' and (text.strip().startswith('$') or '\\' in text):
markdown_lines.append(f"$$\n{text}\n$$\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category not in ['Page-header', 'Page-footer']:
markdown_lines.append(f"{text}\n")
except Exception as e:
print(f"Error converting to markdown: {e}")
return f"### Error converting to Markdown\n\n```\n{str(layout_data)}\n```"
return "\n".join(markdown_lines)
@spaces.GPU
def generate_and_process(model_name: str, image: Image.Image, max_new_tokens: int):
"""
Generates a response using streaming, then processes the final output.
Yields updates for the raw stream, final markdown, and JSON output.
"""
if image is None:
yield "Please upload an image.", "Please upload an image.", None
return
# 1. Select Model and Processor
if model_name == "Camel-Doc-OCR-062825":
processor, model = processor_m, model_m
elif model_name == "Megalodon-OCR-Sync-0713":
processor, model = processor_t, model_t
elif model_name == "Nanonets-OCR-s":
processor, model = processor_c, model_c
elif model_name == "MonkeyOCR-Recognition":
processor, model = processor_g, model_g
else:
yield "Invalid model selected.", "Invalid model selected.", None
return
# 2. Prepare inputs for the model
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
# 3. Stream the generation
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
# Initial placeholder yield
yield buffer, "⏳ Generating response...", None
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01) # Small delay for smoother streaming
yield buffer, "⏳ Generating response...", None
# 4. Process the final buffer content
try:
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
json_str = json_match.group(1) if json_match else buffer
layout_data = json.loads(json_str)
markdown_content = layoutjson2md(image, layout_data)
# Final yield with all processed content
yield buffer, markdown_content, layout_data
except json.JSONDecodeError:
error_msg = "❌ Failed to parse JSON from model output."
yield buffer, error_msg, {"error": "JSONDecodeError", "raw_output": buffer}
except Exception as e:
error_msg = f"❌ An error occurred during post-processing: {e}"
yield buffer, error_msg, {"error": str(e), "raw_output": buffer}
def create_gradio_interface():
"""Create the Gradio interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button {
border: none !important; color: white !important; font-weight: bold !important;
background-color: blue !important;
}
.process-button:hover {
background-color: darkblue !important; transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image to markdown document processing
</p>
</div>
""")
# Keep track of the uploaded image
image_state = gr.State(None)
with gr.Row():
# Left column - Input and controls
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
file_input = gr.Image(
label="Upload Image",
type="pil",
sources=['upload']
)
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
process_btn = gr.Button("πŸš€ Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
# Right column - Results
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("πŸ“ Extracted Content"):
output_stream = gr.Textbox(label="Raw Output Stream", interactive=False, lines=10, show_copy_button=True)
with gr.Accordion("(Formatted Result)", open=True):
markdown_output = gr.Markdown(label="Formatted Result (Result.md)")
with gr.Tab("πŸ“‹ Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results (JSON)", value=None)
# Event Handlers
def handle_file_upload(image):
"""Store the uploaded image in the state."""
return image
def clear_all():
"""Clear all data and reset the interface."""
return None, None, "Click 'Process Document' to see extracted content...", None, None
file_input.upload(handle_file_upload, inputs=[file_input], outputs=[image_state])
process_btn.click(
generate_and_process,
inputs=[model_choice, image_state, max_new_tokens],
outputs=[output_stream, markdown_output, json_output]
)
clear_btn.click(
clear_all,
outputs=[file_input, image_state, markdown_output, json_output, output_stream]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)