Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
from threading import Thread | |
import time | |
import gradio as gr | |
import requests | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
# Constants | |
MIN_PIXELS = 3136 | |
MAX_PIXELS = 11289600 | |
IMAGE_FACTOR = 28 | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Prompt for Layout Analysis | |
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: Format its text as HTML. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object. | |
""" | |
# Load Models | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_C = "nanonets/Nanonets-OCR-s" | |
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True) | |
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_G = "echo840/MonkeyOCR" | |
SUBFOLDER = "Recognition" | |
processor_g = AutoProcessor.from_pretrained( | |
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER | |
) | |
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16 | |
).to(device).eval() | |
# Utility functions | |
def is_arabic_text(text: str) -> bool: | |
"""Check if text contains mostly Arabic characters.""" | |
if not text: | |
return False | |
# Simplified check for Arabic characters in the given text | |
arabic_chars = 0 | |
total_chars = 0 | |
for char in text: | |
if char.isalpha(): | |
total_chars += 1 | |
if '\u0600' <= char <= '\u06FF': | |
arabic_chars += 1 | |
return total_chars > 0 and (arabic_chars / total_chars) > 0.5 | |
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str: | |
"""Convert layout JSON to markdown format.""" | |
import base64 | |
from io import BytesIO | |
markdown_lines = [] | |
try: | |
# Sort items by reading order (top to bottom, left to right) | |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
for item in sorted_items: | |
category = item.get('category', '') | |
text = item.get(text_key, '') | |
bbox = item.get('bbox', []) | |
if category == 'Picture': | |
if bbox and len(bbox) == 4: | |
try: | |
x1, y1, x2, y2 = [int(coord) for coord in bbox] | |
cropped_img = image.crop((x1, y1, x2, y2)) | |
buffer = BytesIO() | |
cropped_img.save(buffer, format='PNG') | |
img_data = base64.b64encode(buffer.getvalue()).decode() | |
markdown_lines.append(f"\n") | |
except Exception as e: | |
markdown_lines.append("\n") | |
elif not text: | |
continue | |
elif category == 'Title': | |
markdown_lines.append(f"# {text}\n") | |
elif category == 'Section-header': | |
markdown_lines.append(f"## {text}\n") | |
elif category == 'Text': | |
markdown_lines.append(f"{text}\n") | |
elif category == 'List-item': | |
markdown_lines.append(f"- {text}\n") | |
elif category == 'Table' and text.strip().startswith('<'): | |
markdown_lines.append(f"{text}\n") | |
elif category == 'Formula' and (text.strip().startswith('$') or '\\' in text): | |
markdown_lines.append(f"$$\n{text}\n$$\n") | |
elif category == 'Caption': | |
markdown_lines.append(f"*{text}*\n") | |
elif category == 'Footnote': | |
markdown_lines.append(f"^{text}^\n") | |
elif category not in ['Page-header', 'Page-footer']: | |
markdown_lines.append(f"{text}\n") | |
except Exception as e: | |
print(f"Error converting to markdown: {e}") | |
return f"### Error converting to Markdown\n\n```\n{str(layout_data)}\n```" | |
return "\n".join(markdown_lines) | |
def generate_and_process(model_name: str, image: Image.Image, max_new_tokens: int): | |
""" | |
Generates a response using streaming, then processes the final output. | |
Yields updates for the raw stream, final markdown, and JSON output. | |
""" | |
if image is None: | |
yield "Please upload an image.", "Please upload an image.", None | |
return | |
# 1. Select Model and Processor | |
if model_name == "Camel-Doc-OCR-062825": | |
processor, model = processor_m, model_m | |
elif model_name == "Megalodon-OCR-Sync-0713": | |
processor, model = processor_t, model_t | |
elif model_name == "Nanonets-OCR-s": | |
processor, model = processor_c, model_c | |
elif model_name == "MonkeyOCR-Recognition": | |
processor, model = processor_g, model_g | |
else: | |
yield "Invalid model selected.", "Invalid model selected.", None | |
return | |
# 2. Prepare inputs for the model | |
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt_full], | |
images=[image], | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to(device) | |
# 3. Stream the generation | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
# Initial placeholder yield | |
yield buffer, "β³ Generating response...", None | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) # Small delay for smoother streaming | |
yield buffer, "β³ Generating response...", None | |
# 4. Process the final buffer content | |
try: | |
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer) | |
json_str = json_match.group(1) if json_match else buffer | |
layout_data = json.loads(json_str) | |
markdown_content = layoutjson2md(image, layout_data) | |
# Final yield with all processed content | |
yield buffer, markdown_content, layout_data | |
except json.JSONDecodeError: | |
error_msg = "β Failed to parse JSON from model output." | |
yield buffer, error_msg, {"error": "JSONDecodeError", "raw_output": buffer} | |
except Exception as e: | |
error_msg = f"β An error occurred during post-processing: {e}" | |
yield buffer, error_msg, {"error": str(e), "raw_output": buffer} | |
def create_gradio_interface(): | |
"""Create the Gradio interface.""" | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } | |
.process-button { | |
border: none !important; color: white !important; font-weight: bold !important; | |
background-color: blue !important; | |
} | |
.process-button:hover { | |
background-color: darkblue !important; transform: translateY(-2px) !important; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; | |
} | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>Dot<span style="color: red;">β</span><strong></strong>OCR Comparator</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Advanced vision-language model for image to markdown document processing | |
</p> | |
</div> | |
""") | |
# Keep track of the uploaded image | |
image_state = gr.State(None) | |
with gr.Row(): | |
# Left column - Input and controls | |
with gr.Column(scale=1): | |
model_choice = gr.Radio( | |
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"], | |
label="Select Model", | |
value="Camel-Doc-OCR-062825" | |
) | |
file_input = gr.Image( | |
label="Upload Image", | |
type="pil", | |
sources=['upload'] | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens") | |
process_btn = gr.Button("π Process Document", variant="primary", elem_classes=["process-button"], size="lg") | |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary") | |
# Right column - Results | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("π Extracted Content"): | |
output_stream = gr.Textbox(label="Raw Output Stream", interactive=False, lines=10, show_copy_button=True) | |
with gr.Accordion("(Formatted Result)", open=True): | |
markdown_output = gr.Markdown(label="Formatted Result (Result.md)") | |
with gr.Tab("π Layout JSON"): | |
json_output = gr.JSON(label="Layout Analysis Results (JSON)", value=None) | |
# Event Handlers | |
def handle_file_upload(image): | |
"""Store the uploaded image in the state.""" | |
return image | |
def clear_all(): | |
"""Clear all data and reset the interface.""" | |
return None, None, "Click 'Process Document' to see extracted content...", None, None | |
file_input.upload(handle_file_upload, inputs=[file_input], outputs=[image_state]) | |
process_btn.click( | |
generate_and_process, | |
inputs=[model_choice, image_state, max_new_tokens], | |
outputs=[output_stream, markdown_output, json_output] | |
) | |
clear_btn.click( | |
clear_all, | |
outputs=[file_input, image_state, markdown_output, json_output, output_stream] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True) |