Spaces:
Running
on
Zero
Running
on
Zero
# app.py | |
# All code combined into a single file for convenience. | |
# --- Imports --- | |
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import base64 | |
import copy | |
from dataclasses import dataclass | |
#import flash_attn_2_cuda as flash_attn_gpu | |
# Vision and ML Libraries | |
import fitz # PyMuPDF | |
import gradio as gr | |
import requests | |
import torch | |
import subprocess | |
from huggingface_hub import snapshot_download | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel | |
from qwen_vl_utils import process_vision_info | |
# Image Processing Libraries | |
import cv2 | |
import numpy as np | |
import albumentations as alb | |
from albumentations.pytorch import ToTensorV2 | |
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
# Attempt to install flash-attn | |
try: | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True) | |
except subprocess.CalledProcessError as e: | |
print(f"Error installing flash-attn: {e}") | |
print("Continuing without flash-attn.") | |
# --- Constants & Global State --- | |
MIN_PIXELS = 3136 | |
MAX_PIXELS = 11289600 | |
IMAGE_FACTOR = 28 | |
DOT_OCR_PROMPT = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: Format its text as HTML. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object. | |
""" | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
PDF_CACHE = { | |
"images": [], | |
"current_page": 0, | |
"total_pages": 0, | |
"file_type": None, | |
"is_parsed": False, | |
"results": [], | |
"model_used": None, | |
} | |
MODELS = {} | |
# ================================================================================= | |
# --- UTILITY FUNCTIONS (from markdown_utils.py and utils.py) --- | |
# ================================================================================= | |
# --- Markdown Conversion Utilities --- | |
def extract_table_from_html(html_string): | |
"""Extract and clean table tags from HTML string""" | |
try: | |
table_pattern = re.compile(r'<table.*?>.*?</table>', re.DOTALL) | |
tables = table_pattern.findall(html_string) | |
tables = [re.sub(r'<table[^>]*>', '<table>', table) for table in tables] | |
return '\n'.join(tables) | |
except Exception as e: | |
print(f"extract_table_from_html error: {str(e)}") | |
return f"<table><tr><td>Error extracting table: {str(e)}</td></tr></table>" | |
class MarkdownConverter: | |
"""Convert structured recognition results to Markdown format""" | |
def __init__(self): | |
self.heading_levels = {'title': '#', 'sec': '##', 'sub_sec': '###'} | |
self.special_labels = {'tab', 'fig', 'title', 'sec', 'sub_sec', 'list', 'formula', 'reference', 'alg'} | |
def try_remove_newline(self, text: str) -> str: | |
try: | |
text = text.strip().replace('-\n', '') | |
def is_chinese(char): return '\u4e00' <= char <= '\u9fff' | |
lines, processed_lines = text.split('\n'), [] | |
for i in range(len(lines)-1): | |
current_line, next_line = lines[i].strip(), lines[i+1].strip() | |
if current_line: | |
if next_line: | |
if is_chinese(current_line[-1]) and is_chinese(next_line[0]): | |
processed_lines.append(current_line) | |
else: | |
processed_lines.append(current_line + ' ') | |
else: | |
processed_lines.append(current_line + '\n') | |
else: | |
processed_lines.append('\n') | |
if lines and lines[-1].strip(): | |
processed_lines.append(lines[-1].strip()) | |
return ''.join(processed_lines) | |
except Exception as e: | |
print(f"try_remove_newline error: {str(e)}") | |
return text | |
def _handle_text(self, text: str) -> str: | |
try: | |
if not text: return "" | |
if text.strip().startswith("\\begin{array}") and text.strip().endswith("\\end{array}"): | |
text = "$$" + text + "$$" | |
elif ("_{" in text or "^{" in text or "\\" in text or "_ {" in text or "^ {" in text) and ("$" not in text) and ("\\begin" not in text): | |
text = "$" + text + "$" | |
text = self._process_formulas_in_text(text) | |
text = self.try_remove_newline(text) | |
return text | |
except Exception as e: | |
print(f"_handle_text error: {str(e)}") | |
return text | |
def _process_formulas_in_text(self, text: str) -> str: | |
try: | |
delimiters = [('$$', '$$'), ('\\[', '\\]'), ('$', '$'), ('\\(', '\\)')] | |
result = text | |
for start_delim, end_delim in delimiters: | |
current_pos, processed_parts = 0, [] | |
while current_pos < len(result): | |
start_pos = result.find(start_delim, current_pos) | |
if start_pos == -1: | |
processed_parts.append(result[current_pos:]) | |
break | |
processed_parts.append(result[current_pos:start_pos]) | |
end_pos = result.find(end_delim, start_pos + len(start_delim)) | |
if end_pos == -1: | |
processed_parts.append(result[start_pos:]) | |
break | |
formula_content = result[start_pos + len(start_delim):end_pos] | |
processed_formula = formula_content.replace('\n', ' \\\\ ') | |
processed_parts.append(f"{start_delim}{processed_formula}{end_delim}") | |
current_pos = end_pos + len(end_delim) | |
result = ''.join(processed_parts) | |
return result | |
except Exception as e: | |
print(f"_process_formulas_in_text error: {str(e)}") | |
return text | |
def _remove_newline_in_heading(self, text: str) -> str: | |
try: | |
def is_chinese(char): return '\u4e00' <= char <= '\u9fff' | |
return text.replace('\n', '') if any(is_chinese(char) for char in text) else text.replace('\n', ' ') | |
except Exception as e: | |
print(f"_remove_newline_in_heading error: {str(e)}") | |
return text | |
def _handle_heading(self, text: str, label: str) -> str: | |
try: | |
level = self.heading_levels.get(label, '#') | |
text = self._remove_newline_in_heading(text.strip()) | |
text = self._handle_text(text) | |
return f"{level} {text}\n\n" | |
except Exception as e: | |
print(f"_handle_heading error: {str(e)}") | |
return f"# Error processing heading: {text}\n\n" | |
def _handle_list_item(self, text: str) -> str: | |
try: | |
return f"- {text.strip()}\n" | |
except Exception as e: | |
print(f"_handle_list_item error: {str(e)}") | |
return f"- Error processing list item: {text}\n" | |
def _handle_figure(self, text: str, section_count: int) -> str: | |
try: | |
if not text.strip(): | |
return f"\n\n" | |
if text.startswith("data:image/"): | |
return f"\n\n" | |
else: | |
return f"\n\n" | |
except Exception as e: | |
print(f"_handle_figure error: {str(e)}") | |
return f"*[Error processing figure: {str(e)}]*\n\n" | |
def _handle_table(self, text: str) -> str: | |
try: | |
if '<table' in text.lower() or '<tr' in text.lower(): | |
return extract_table_from_html(text) + "\n\n" | |
else: | |
table_lines = text.split('\n') | |
if not table_lines: return "\n\n" | |
col_count = len(table_lines[0].split()) if table_lines[0] else 1 | |
header = '| ' + ' | '.join(table_lines[0].split()) + ' |' | |
separator = '| ' + ' | '.join(['---'] * col_count) + ' |' | |
rows = [f"| {' | '.join(line.split())} |" for line in table_lines[1:]] | |
return '\n'.join([header, separator] + rows) + '\n\n' | |
except Exception as e: | |
print(f"_handle_table error: {str(e)}") | |
return f"*[Error processing table: {str(e)}]*\n\n" | |
def _handle_algorithm(self, text: str) -> str: | |
try: | |
text = re.sub(r'\\begin\{algorithm\}(.*?)\\end\{algorithm\}', r'\1', text, flags=re.DOTALL) | |
text = text.replace('\\begin{algorithmic}', '').replace('\\end{algorithmic}', '') | |
caption_match = re.search(r'\\caption\{(.*?)\}', text) | |
caption = f"**{caption_match.group(1)}**\n\n" if caption_match else "" | |
algorithm_text = re.sub(r'\\caption\{.*?\}', '', text).strip() | |
return f"{caption}```\n{algorithm_text}\n```\n\n" | |
except Exception as e: | |
print(f"_handle_algorithm error: {str(e)}") | |
return f"*[Error processing algorithm: {str(e)}]*\n\n{text}\n\n" | |
def _handle_formula(self, text: str) -> str: | |
try: | |
processed_text = self._process_formulas_in_text(text) | |
if '$$' not in processed_text and '\\[' not in processed_text: | |
processed_text = f'$${processed_text}$$' | |
return f"{processed_text}\n\n" | |
except Exception as e: | |
print(f"_handle_formula error: {str(e)}") | |
return f"*[Error processing formula: {str(e)}]*\n\n" | |
def convert(self, recognition_results: List[Dict[str, Any]]) -> str: | |
markdown_content = [] | |
for i, result in enumerate(recognition_results): | |
try: | |
label, text = result.get('label', ''), result.get('text', '').strip() | |
if label == 'fig': | |
markdown_content.append(self._handle_figure(text, i)) | |
continue | |
if not text: continue | |
if label in {'title', 'sec', 'sub_sec'}: | |
markdown_content.append(self._handle_heading(text, label)) | |
elif label == 'list': | |
markdown_content.append(self._handle_list_item(text)) | |
elif label == 'tab': | |
markdown_content.append(self._handle_table(text)) | |
elif label == 'alg': | |
markdown_content.append(self._handle_algorithm(text)) | |
elif label == 'formula': | |
markdown_content.append(self._handle_formula(text)) | |
elif label not in self.special_labels: | |
markdown_content.append(f"{self._handle_text(text)}\n\n") | |
except Exception as e: | |
print(f"Error processing item {i}: {str(e)}") | |
markdown_content.append(f"*[Error processing content]*\n\n") | |
return self._post_process(''.join(markdown_content)) | |
def _post_process(self, md: str) -> str: | |
try: | |
md = re.sub(r'\\author\{(.*?)\}', lambda m: self._handle_text(m.group(1)), md, flags=re.DOTALL) | |
md = re.sub(r'\$(\\author\{.*?\})\$', lambda m: self._handle_text(re.search(r'\\author\{(.*?)\}', m.group(1), re.DOTALL).group(1)), md, flags=re.DOTALL) | |
md = re.sub(r'\\begin\{abstract\}(.*?)\\end\{abstract\}', r'**Abstract** \1', md, flags=re.DOTALL) | |
md = re.sub(r'\\begin\{abstract\}', r'**Abstract**', md) | |
md = re.sub(r'\\eqno\{\((.*?)\)\}', r'\\tag{\1}', md) | |
md = md.replace("\[ \\\\", "$$ \\\\").replace("\\\\ \]", "\\\\ $$") | |
md = re.sub(r'_ {', r'_{', md) | |
md = re.sub(r'^ {', r'^{', md) | |
md = re.sub(r'\n{3,}', r'\n\n', md) | |
return md | |
except Exception as e: | |
print(f"_post_process error: {str(e)}") | |
return md | |
# --- General Processing Utilities --- | |
class ImageDimensions: | |
original_w: int | |
original_h: int | |
padded_w: int | |
padded_h: int | |
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2): | |
if isinstance(image, str): | |
image = cv2.imread(image) | |
img_h, img_w = image.shape[:2] | |
new_boxes = [] | |
for box in boxes: | |
best_box = copy.deepcopy(box) | |
def check_edge(img, current_box, i, is_vertical): | |
edge = current_box[i] | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) | |
if is_vertical: | |
line = binary[current_box[1] : current_box[3] + 1, edge] | |
else: | |
line = binary[edge, current_box[0] : current_box[2] + 1] | |
transitions = np.abs(np.diff(line)) | |
return np.sum(transitions) / len(transitions) | |
edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)] | |
current_box = copy.deepcopy(box) | |
current_box = [min(max(c, 0), d - 1) for c, d in zip(current_box, [img_w, img_h, img_w, img_h])] | |
for i, direction, is_vertical in edges: | |
best_score = check_edge(image, current_box, i, is_vertical) | |
if best_score <= threshold: continue | |
for _ in range(max_pixels): | |
current_box[i] += direction | |
dim = img_w if i in [0, 2] else img_h | |
current_box[i] = min(max(current_box[i], 0), dim - 1) | |
score = check_edge(image, current_box, i, is_vertical) | |
if score < best_score: | |
best_score, best_box = score, copy.deepcopy(current_box) | |
if score <= threshold: break | |
new_boxes.append(best_box) | |
return new_boxes | |
def parse_layout_string(bbox_str): | |
pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)" | |
matches = re.finditer(pattern, bbox_str) | |
return [([float(m.group(i)) for i in range(1, 5)], m.group(5).strip()) for m in matches] | |
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]: | |
try: | |
top, left = (dims.padded_h - dims.original_h) // 2, (dims.padded_w - dims.original_w) // 2 | |
orig_x1, orig_y1 = max(0, x1 - left), max(0, y1 - top) | |
orig_x2, orig_y2 = min(dims.original_w, x2 - left), min(dims.original_h, y2 - top) | |
if orig_x2 <= orig_x1: orig_x2 = min(orig_x1 + 1, dims.original_w) | |
if orig_y2 <= orig_y1: orig_y2 = min(orig_y1 + 1, dims.original_h) | |
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2) | |
except Exception as e: | |
print(f"map_to_original_coordinates error: {str(e)}") | |
return 0, 0, min(100, dims.original_w), min(100, dims.original_h) | |
def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None): | |
try: | |
x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h) | |
x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h) | |
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(dims.padded_w, x2), min(dims.padded_h, y2) | |
if x2 <= x1: x2 = min(x1 + 1, dims.padded_w) | |
if y2 <= y1: y2 = min(y1 + 1, dims.padded_h) | |
x1, y1, x2, y2 = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])[0] | |
if previous_box: | |
prev_x1, prev_y1, prev_x2, prev_y2 = previous_box | |
if (x1 < prev_x2 and x2 > prev_x1) and (y1 < prev_y2 and y2 > prev_y1): | |
y1 = min(prev_y2, dims.padded_h - 1) | |
if y2 <= y1: y2 = min(y1 + 1, dims.padded_h) | |
orig_coords = map_to_original_coordinates(x1, y1, x2, y2, dims) | |
return x1, y1, x2, y2, *orig_coords, [x1, y1, x2, y2] | |
except Exception as e: | |
print(f"process_coordinates error: {str(e)}") | |
orig_coords = 0, 0, min(100, dims.original_w), min(100, dims.original_h) | |
return 0, 0, 100, 100, *orig_coords, [0, 0, 100, 100] | |
def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]: | |
try: | |
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
original_h, original_w = image_cv.shape[:2] | |
max_size = max(original_h, original_w) | |
top, bottom = (max_size - original_h) // 2, max_size - original_h - ((max_size - original_h) // 2) | |
left, right = (max_size - original_w) // 2, max_size - original_w - ((max_size - original_w) // 2) | |
padded_image = cv2.copyMakeBorder(image_cv, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0)) | |
padded_h, padded_w = padded_image.shape[:2] | |
dims = ImageDimensions(original_w, original_h, padded_w, padded_h) | |
return padded_image, dims | |
except Exception as e: | |
print(f"prepare_image error: {str(e)}") | |
dims = ImageDimensions(image.width, image.height, image.width, image.height) | |
return np.zeros((image.height, image.width, 3), dtype=np.uint8), dims | |
# ================================================================================= | |
# --- MODEL WRAPPER CLASSES --- | |
# ================================================================================= | |
class DotOcrModel: | |
def __init__(self, device: str): | |
self.model, self.processor, self.device = None, None, device | |
self.model_id, self.model_path = "rednote-hilab/dots.ocr", "./models/dots-ocr-local" | |
def load_model(self): | |
if self.model is None: | |
print("Loading dot.ocr model...") | |
snapshot_download(repo_id=self.model_id, local_dir=self.model_path, local_dir_use_symlinks=False) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
self.model_path, attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True | |
) | |
self.processor = AutoProcessor.from_pretrained(self.model_path, trust_remote_code=True) | |
print("dot.ocr model loaded.") | |
def smart_resize(height, width, factor, min_pixels, max_pixels): | |
if max(height, width) / min(height, width) > 200: raise ValueError("Aspect ratio too high") | |
h_bar, w_bar = max(factor, round(height / factor) * factor), max(factor, round(width / factor) * factor) | |
if h_bar * w_bar > max_pixels: | |
beta = math.sqrt((height * width) / max_pixels) | |
h_bar, w_bar = round(height / beta / factor) * factor, round(width / beta / factor) * factor | |
elif h_bar * w_bar < min_pixels: | |
beta = math.sqrt(min_pixels / (height * width)) | |
h_bar, w_bar = round(height * beta / factor) * factor, round(width / beta / factor) * factor | |
return h_bar, w_bar | |
def fetch_image(self, image_input, min_pixels, max_pixels): | |
image = image_input.convert('RGB') | |
height, width = self.smart_resize(image.height, image.width, IMAGE_FACTOR, min_pixels, max_pixels) | |
return image.resize((width, height), Image.LANCZOS) | |
def inference(self, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str: | |
self.load_model() | |
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}] | |
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, _ = process_vision_info(messages) | |
inputs = self.processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(self.device) | |
with torch.no_grad(): | |
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1) | |
generated_ids_trimmed = [out[len(ins):] for ins, out in zip(inputs.input_ids, generated_ids)] | |
return self.processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
def process_image(self, image: Image.Image, min_pixels: int, max_pixels: int): | |
resized_image = self.fetch_image(image, min_pixels, max_pixels) | |
raw_output = self.inference(resized_image, DOT_OCR_PROMPT) | |
result = {'original_image': image, 'raw_output': raw_output, 'layout_result': None} | |
try: | |
layout_data = json.loads(raw_output) | |
result['layout_result'] = layout_data | |
result['processed_image'] = self.draw_layout_on_image(image, layout_data) | |
result['markdown_content'] = self.layoutjson2md(image, layout_data) | |
except (json.JSONDecodeError, KeyError) as e: | |
print(f"Failed to parse or process dot.ocr layout: {e}") | |
result['processed_image'] = image | |
result['markdown_content'] = f"### Error processing output\nRaw model output:\n```json\n{raw_output}\n```" | |
return result | |
def draw_layout_on_image(self, image: Image.Image, layout_data: List[Dict]) -> Image.Image: | |
img_copy, draw = image.copy(), ImageDraw.Draw(img_copy) | |
colors = {'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4', | |
'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7', | |
'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'} | |
try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 15) | |
except: font = ImageFont.load_default() | |
for item in layout_data: | |
if 'bbox' in item and 'category' in item: | |
bbox, category, color = item['bbox'], item['category'], colors.get(category, '#000000') | |
draw.rectangle(bbox, outline=color, width=3) | |
label_bbox = draw.textbbox((0, 0), category, font=font) | |
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1] | |
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 5) | |
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 4], fill=color) | |
draw.text((label_x + 2, label_y + 2), category, fill='white', font=font) | |
return img_copy | |
def layoutjson2md(self, image: Image.Image, layout_data: List[Dict]) -> str: | |
md_lines, sorted_items = [], sorted(layout_data, key=lambda x: (x.get('bbox', [0]*4)[1], x.get('bbox', [0]*4)[0])) | |
for item in sorted_items: | |
cat, txt, bbox = item.get('category'), item.get('text'), item.get('bbox') | |
if cat == 'Picture' and bbox: | |
try: | |
x1, y1, x2, y2 = max(0, int(bbox[0])), max(0, int(bbox[1])), min(image.width, int(bbox[2])), min(image.height, int(bbox[3])) | |
if x2 > x1 and y2 > y1: | |
cropped = image.crop((x1, y1, x2, y2)) | |
buffer = BytesIO() | |
cropped.save(buffer, format='PNG') | |
img_data = base64.b64encode(buffer.getvalue()).decode() | |
md_lines.append(f"\n") | |
except Exception: md_lines.append("\n") | |
elif not txt: continue | |
elif cat == 'Title': md_lines.append(f"# {txt}\n") | |
elif cat == 'Section-header': md_lines.append(f"## {txt}\n") | |
elif cat == 'List-item': md_lines.append(f"- {txt}\n") | |
elif cat == 'Formula': md_lines.append(f"$$\n{txt}\n$$\n") | |
elif cat == 'Caption': md_lines.append(f"*{txt}*\n") | |
elif cat == 'Footnote': md_lines.append(f"^{txt}^\n") | |
elif cat in ['Text', 'Table']: md_lines.append(f"{txt}\n") | |
return "\n".join(md_lines) | |
class DolphinModel: | |
def __init__(self, device: str): | |
self.model, self.processor, self.tokenizer, self.device = None, None, None, device | |
self.model_id = "ByteDance/Dolphin" | |
def load_model(self): | |
if self.model is None: | |
print("Loading Dolphin model...") | |
self.processor = AutoProcessor.from_pretrained(self.model_id) | |
self.model = VisionEncoderDecoderModel.from_pretrained(self.model_id).eval().to(self.device).half() | |
self.tokenizer = self.processor.tokenizer | |
print("Dolphin model loaded.") | |
def model_chat(self, prompt, image): | |
self.load_model() | |
images = image if isinstance(image, list) else [image] | |
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images) | |
batch_inputs = self.processor(images, return_tensors="pt", padding=True) | |
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device) | |
prompts = [f"<s>{p} <Answer/>" for p in prompts] | |
batch_prompt_inputs = self.tokenizer(prompts, add_special_tokens=False, return_tensors="pt") | |
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device) | |
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device) | |
outputs = self.model.generate( | |
pixel_values=batch_pixel_values, decoder_input_ids=batch_prompt_ids, | |
decoder_attention_mask=batch_attention_mask, max_length=4096, | |
pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id, | |
use_cache=True, bad_words_ids=[[self.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, do_sample=False, num_beams=1, repetition_penalty=1.1 | |
) | |
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False) | |
results = [seq.replace(p, "").replace("<pad>", "").replace("</s>", "").strip() for p, seq in zip(prompts, sequences)] | |
return results if isinstance(image, list) else results[0] | |
def process_elements(self, layout_str: str, image: Image.Image, max_batch_size: int = 16): | |
padded_image, dims = prepare_image(image) | |
layout_results = parse_layout_string(layout_str) | |
elements, reading_order = [], 0 | |
for bbox, label in layout_results: | |
try: | |
coords = process_coordinates(bbox, padded_image, dims) | |
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2 = coords[:8] | |
cropped = padded_image[y1:y2, x1:x2] | |
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3: | |
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)) | |
elements.append({"crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order}) | |
reading_order += 1 | |
except Exception as e: | |
print(f"Error processing Dolphin element bbox {bbox}: {e}") | |
text_elems = self.process_element_batch([e for e in elements if e['label'] != 'tab' and e['label'] != 'fig'], "Read text in the image.", max_batch_size) | |
table_elems = self.process_element_batch([e for e in elements if e['label'] == 'tab'], "Parse the table in the image.", max_batch_size) | |
fig_elems = [{"label": e['label'], "bbox": e['bbox'], "text": "", "reading_order": e['reading_order']} for e in elements if e['label'] == 'fig'] | |
all_results = sorted(text_elems + table_elems + fig_elems, key=lambda x: x['reading_order']) | |
return all_results | |
def process_element_batch(self, elements, prompt, max_batch_size=16): | |
results = [] | |
for i in range(0, len(elements), max_batch_size): | |
batch = elements[i:i+max_batch_size] | |
crops = [elem["crop"] for elem in batch] | |
prompts = [prompt] * len(crops) | |
batch_results = self.model_chat(prompts, crops) | |
for j, res_text in enumerate(batch_results): | |
elem = batch[j] | |
results.append({"label": elem["label"], "bbox": elem["bbox"], "text": res_text.strip(), "reading_order": elem["reading_order"]}) | |
return results | |
def process_image(self, image: Image.Image): | |
layout_output = self.model_chat("Parse the reading order of this document.", image) | |
recognition_results = self.process_elements(layout_output, image) | |
markdown_content = MarkdownConverter().convert(recognition_results) | |
return { | |
'original_image': image, 'processed_image': image, 'markdown_content': markdown_content, | |
'layout_result': recognition_results, 'raw_output': layout_output | |
} | |
# ================================================================================= | |
# --- GRADIO UI AND EVENT HANDLERS --- | |
# ================================================================================= | |
def create_gradio_interface(): | |
"""Create the main Gradio interface and define all event handlers""" | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } | |
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} | |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; } | |
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; } | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot.OCR Comparator") as demo: | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Advanced vision-language model for image/PDF to markdown document processing | |
</p> | |
</div> | |
""") | |
with gr.Row(elem_classes=["main-container"]): | |
with gr.Column(scale=1): | |
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".pdf"], type="filepath") | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"], | |
inputs=file_input, | |
label="Example Documents" | |
) | |
model_choice = gr.Radio(choices=["dot.ocr", "Dolphin"], label="Select Model", value="dot.ocr") | |
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=400) | |
with gr.Row(): | |
prev_page_btn = gr.Button("◀ Previous") | |
page_info = gr.HTML('<div class="page-info">No file loaded</div>') | |
next_page_btn = gr.Button("Next ▶") | |
with gr.Accordion("Advanced Settings (dot.ocr only)", open=False): | |
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels", step=1) | |
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels", step=1) | |
with gr.Row(): | |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], scale=2) | |
clear_btn = gr.Button("🗑️ Clear", variant="secondary") | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("📝 Extracted Content"): | |
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", elem_id="markdown_output") | |
with gr.Tab("🖼️ Processed Image"): | |
processed_image_output = gr.Image(label="Image with Layout Detection", type="pil", interactive=False) | |
with gr.Tab("📋 Layout JSON"): | |
json_output = gr.JSON(label="Layout Analysis Results") | |
def load_file_for_preview(file_path: str) -> Tuple[List[Image.Image], str]: | |
images = [] | |
if not file_path or not os.path.exists(file_path): return [], "No file selected" | |
try: | |
ext = os.path.splitext(file_path)[1].lower() | |
if ext == '.pdf': | |
doc = fitz.open(file_path) | |
for page in doc: | |
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) | |
images.append(Image.open(BytesIO(pix.tobytes("ppm"))).convert('RGB')) | |
doc.close() | |
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']: | |
images.append(Image.open(file_path).convert('RGB')) | |
return images, f"Page 1 / {len(images)}" | |
except Exception as e: | |
print(f"Error loading file for preview: {e}") | |
return [], f"Error loading file: {e}" | |
def handle_file_upload(file_path): | |
global PDF_CACHE | |
images, page_info_str = load_file_for_preview(file_path) | |
if not images: | |
return None, page_info_str | |
PDF_CACHE = { | |
"images": images, "current_page": 0, "total_pages": len(images), | |
"is_parsed": False, "results": [], "model_used": None | |
} | |
return images[0], f'<div class="page-info">{page_info_str}</div>' | |
def process_document(file_path, model_name, min_pix, max_pix): | |
global PDF_CACHE | |
if not file_path or not PDF_CACHE["images"]: | |
return "Please upload a file first.", None, None | |
if model_name not in MODELS: | |
if model_name == 'dot.ocr': MODELS[model_name] = DotOcrModel(DEVICE) | |
elif model_name == 'Dolphin': MODELS[model_name] = DolphinModel(DEVICE) | |
model = MODELS[model_name] | |
all_results, all_markdown = [], [] | |
for i, img in enumerate(PDF_CACHE["images"]): | |
gr.Info(f"Processing page {i+1}/{len(PDF_CACHE['images'])} with {model_name}...") | |
if model_name == 'dot.ocr': | |
result = model.process_image(img, int(min_pix), int(max_pix)) | |
else: # Dolphin | |
result = model.process_image(img) | |
all_results.append(result) | |
if result.get('markdown_content'): | |
all_markdown.append(f"### Page {i+1}\n\n{result['markdown_content']}") | |
PDF_CACHE.update({"results": all_results, "is_parsed": True, "model_used": model_name}) | |
if not all_results: return "Processing failed.", None, None | |
first_result = all_results[0] | |
combined_md = "\n\n---\n\n".join(all_markdown) | |
return combined_md, first_result.get('processed_image'), first_result.get('layout_result') | |
def turn_page(direction): | |
global PDF_CACHE | |
if not PDF_CACHE["images"] or not PDF_CACHE["is_parsed"]: | |
return None, '<div class="page-info">No file parsed</div>', "No results yet", None, None | |
if direction == "prev": PDF_CACHE["current_page"] = max(0, PDF_CACHE["current_page"] - 1) | |
else: PDF_CACHE["current_page"] = min(PDF_CACHE["total_pages"] - 1, PDF_CACHE["current_page"] + 1) | |
idx = PDF_CACHE["current_page"] | |
page_info_html = f'<div class="page-info">Page {idx + 1} / {PDF_CACHE["total_pages"]}</div>' | |
preview_img = PDF_CACHE["images"][idx] | |
result = PDF_CACHE["results"][idx] | |
all_md = [f"### Page {i+1}\n\n{res.get('markdown_content', '')}" for i, res in enumerate(PDF_CACHE["results"])] | |
md_content = "\n\n---\n\n".join(all_md) if PDF_CACHE["total_pages"] > 1 else result.get('markdown_content', 'No content') | |
return preview_img, page_info_html, md_content, result.get('processed_image'), result.get('layout_result') | |
def clear_all(): | |
global PDF_CACHE | |
PDF_CACHE = {"images": [], "current_page": 0, "total_pages": 0, "is_parsed": False, "results": [], "model_used": None} | |
return None, None, '<div class="page-info">No file loaded</div>', "Click 'Process Document' to see extracted content...", None, None | |
# --- Wire UI components --- | |
file_input.change(handle_file_upload, inputs=file_input, outputs=[image_preview, page_info]) | |
process_btn.click( | |
process_document, | |
inputs=[file_input, model_choice, min_pixels, max_pixels], | |
outputs=[markdown_output, processed_image_output, json_output] | |
) | |
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image_output, json_output]) | |
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image_output, json_output]) | |
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, markdown_output, processed_image_output, json_output]) | |
return demo | |
if __name__ == "__main__": | |
# Create example directory if it doesn't exist | |
if not os.path.exists("examples"): | |
os.makedirs("examples") | |
print("Created 'examples' directory. Please add sample images/PDFs there.") | |
app = create_gradio_interface() | |
app.queue().launch(debug=True, show_error=True) |