Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,290 Bytes
f17f462 c152910 f17f462 3c4fefe c152910 f17f462 c152910 9180057 278dfd1 9180057 4148e9b f17f462 9180057 60f59d6 f17f462 278dfd1 f17f462 c152910 f17f462 c152910 4148e9b c152910 4148e9b f17f462 c152910 f17f462 c152910 f17f462 c152910 f17f462 c152910 f17f462 4148e9b f17f462 c152910 f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 c152910 f17f462 c152910 f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 c152910 f17f462 c152910 f17f462 c152910 f17f462 c152910 f17f462 c152910 4148e9b f17f462 c152910 f17f462 4148e9b f17f462 c152910 f17f462 c152910 f17f462 4148e9b c152910 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b f17f462 4148e9b c152910 f17f462 c152910 f17f462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 |
# app.py
# All code combined into a single file for convenience.
# --- Imports ---
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import base64
import copy
from dataclasses import dataclass
#import flash_attn_2_cuda as flash_attn_gpu
# Vision and ML Libraries
import fitz # PyMuPDF
import gradio as gr
import requests
import torch
import subprocess
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
from qwen_vl_utils import process_vision_info
# Image Processing Libraries
import cv2
import numpy as np
import albumentations as alb
from albumentations.pytorch import ToTensorV2
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
# Attempt to install flash-attn
try:
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True)
except subprocess.CalledProcessError as e:
print(f"Error installing flash-attn: {e}")
print("Continuing without flash-attn.")
# --- Constants & Global State ---
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
DOT_OCR_PROMPT = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
PDF_CACHE = {
"images": [],
"current_page": 0,
"total_pages": 0,
"file_type": None,
"is_parsed": False,
"results": [],
"model_used": None,
}
MODELS = {}
# =================================================================================
# --- UTILITY FUNCTIONS (from markdown_utils.py and utils.py) ---
# =================================================================================
# --- Markdown Conversion Utilities ---
def extract_table_from_html(html_string):
"""Extract and clean table tags from HTML string"""
try:
table_pattern = re.compile(r'<table.*?>.*?</table>', re.DOTALL)
tables = table_pattern.findall(html_string)
tables = [re.sub(r'<table[^>]*>', '<table>', table) for table in tables]
return '\n'.join(tables)
except Exception as e:
print(f"extract_table_from_html error: {str(e)}")
return f"<table><tr><td>Error extracting table: {str(e)}</td></tr></table>"
class MarkdownConverter:
"""Convert structured recognition results to Markdown format"""
def __init__(self):
self.heading_levels = {'title': '#', 'sec': '##', 'sub_sec': '###'}
self.special_labels = {'tab', 'fig', 'title', 'sec', 'sub_sec', 'list', 'formula', 'reference', 'alg'}
def try_remove_newline(self, text: str) -> str:
try:
text = text.strip().replace('-\n', '')
def is_chinese(char): return '\u4e00' <= char <= '\u9fff'
lines, processed_lines = text.split('\n'), []
for i in range(len(lines)-1):
current_line, next_line = lines[i].strip(), lines[i+1].strip()
if current_line:
if next_line:
if is_chinese(current_line[-1]) and is_chinese(next_line[0]):
processed_lines.append(current_line)
else:
processed_lines.append(current_line + ' ')
else:
processed_lines.append(current_line + '\n')
else:
processed_lines.append('\n')
if lines and lines[-1].strip():
processed_lines.append(lines[-1].strip())
return ''.join(processed_lines)
except Exception as e:
print(f"try_remove_newline error: {str(e)}")
return text
def _handle_text(self, text: str) -> str:
try:
if not text: return ""
if text.strip().startswith("\\begin{array}") and text.strip().endswith("\\end{array}"):
text = "$$" + text + "$$"
elif ("_{" in text or "^{" in text or "\\" in text or "_ {" in text or "^ {" in text) and ("$" not in text) and ("\\begin" not in text):
text = "$" + text + "$"
text = self._process_formulas_in_text(text)
text = self.try_remove_newline(text)
return text
except Exception as e:
print(f"_handle_text error: {str(e)}")
return text
def _process_formulas_in_text(self, text: str) -> str:
try:
delimiters = [('$$', '$$'), ('\\[', '\\]'), ('$', '$'), ('\\(', '\\)')]
result = text
for start_delim, end_delim in delimiters:
current_pos, processed_parts = 0, []
while current_pos < len(result):
start_pos = result.find(start_delim, current_pos)
if start_pos == -1:
processed_parts.append(result[current_pos:])
break
processed_parts.append(result[current_pos:start_pos])
end_pos = result.find(end_delim, start_pos + len(start_delim))
if end_pos == -1:
processed_parts.append(result[start_pos:])
break
formula_content = result[start_pos + len(start_delim):end_pos]
processed_formula = formula_content.replace('\n', ' \\\\ ')
processed_parts.append(f"{start_delim}{processed_formula}{end_delim}")
current_pos = end_pos + len(end_delim)
result = ''.join(processed_parts)
return result
except Exception as e:
print(f"_process_formulas_in_text error: {str(e)}")
return text
def _remove_newline_in_heading(self, text: str) -> str:
try:
def is_chinese(char): return '\u4e00' <= char <= '\u9fff'
return text.replace('\n', '') if any(is_chinese(char) for char in text) else text.replace('\n', ' ')
except Exception as e:
print(f"_remove_newline_in_heading error: {str(e)}")
return text
def _handle_heading(self, text: str, label: str) -> str:
try:
level = self.heading_levels.get(label, '#')
text = self._remove_newline_in_heading(text.strip())
text = self._handle_text(text)
return f"{level} {text}\n\n"
except Exception as e:
print(f"_handle_heading error: {str(e)}")
return f"# Error processing heading: {text}\n\n"
def _handle_list_item(self, text: str) -> str:
try:
return f"- {text.strip()}\n"
except Exception as e:
print(f"_handle_list_item error: {str(e)}")
return f"- Error processing list item: {text}\n"
def _handle_figure(self, text: str, section_count: int) -> str:
try:
if not text.strip():
return f"\n\n"
if text.startswith("data:image/"):
return f"\n\n"
else:
return f"\n\n"
except Exception as e:
print(f"_handle_figure error: {str(e)}")
return f"*[Error processing figure: {str(e)}]*\n\n"
def _handle_table(self, text: str) -> str:
try:
if '<table' in text.lower() or '<tr' in text.lower():
return extract_table_from_html(text) + "\n\n"
else:
table_lines = text.split('\n')
if not table_lines: return "\n\n"
col_count = len(table_lines[0].split()) if table_lines[0] else 1
header = '| ' + ' | '.join(table_lines[0].split()) + ' |'
separator = '| ' + ' | '.join(['---'] * col_count) + ' |'
rows = [f"| {' | '.join(line.split())} |" for line in table_lines[1:]]
return '\n'.join([header, separator] + rows) + '\n\n'
except Exception as e:
print(f"_handle_table error: {str(e)}")
return f"*[Error processing table: {str(e)}]*\n\n"
def _handle_algorithm(self, text: str) -> str:
try:
text = re.sub(r'\\begin\{algorithm\}(.*?)\\end\{algorithm\}', r'\1', text, flags=re.DOTALL)
text = text.replace('\\begin{algorithmic}', '').replace('\\end{algorithmic}', '')
caption_match = re.search(r'\\caption\{(.*?)\}', text)
caption = f"**{caption_match.group(1)}**\n\n" if caption_match else ""
algorithm_text = re.sub(r'\\caption\{.*?\}', '', text).strip()
return f"{caption}```\n{algorithm_text}\n```\n\n"
except Exception as e:
print(f"_handle_algorithm error: {str(e)}")
return f"*[Error processing algorithm: {str(e)}]*\n\n{text}\n\n"
def _handle_formula(self, text: str) -> str:
try:
processed_text = self._process_formulas_in_text(text)
if '$$' not in processed_text and '\\[' not in processed_text:
processed_text = f'$${processed_text}$$'
return f"{processed_text}\n\n"
except Exception as e:
print(f"_handle_formula error: {str(e)}")
return f"*[Error processing formula: {str(e)}]*\n\n"
def convert(self, recognition_results: List[Dict[str, Any]]) -> str:
markdown_content = []
for i, result in enumerate(recognition_results):
try:
label, text = result.get('label', ''), result.get('text', '').strip()
if label == 'fig':
markdown_content.append(self._handle_figure(text, i))
continue
if not text: continue
if label in {'title', 'sec', 'sub_sec'}:
markdown_content.append(self._handle_heading(text, label))
elif label == 'list':
markdown_content.append(self._handle_list_item(text))
elif label == 'tab':
markdown_content.append(self._handle_table(text))
elif label == 'alg':
markdown_content.append(self._handle_algorithm(text))
elif label == 'formula':
markdown_content.append(self._handle_formula(text))
elif label not in self.special_labels:
markdown_content.append(f"{self._handle_text(text)}\n\n")
except Exception as e:
print(f"Error processing item {i}: {str(e)}")
markdown_content.append(f"*[Error processing content]*\n\n")
return self._post_process(''.join(markdown_content))
def _post_process(self, md: str) -> str:
try:
md = re.sub(r'\\author\{(.*?)\}', lambda m: self._handle_text(m.group(1)), md, flags=re.DOTALL)
md = re.sub(r'\$(\\author\{.*?\})\$', lambda m: self._handle_text(re.search(r'\\author\{(.*?)\}', m.group(1), re.DOTALL).group(1)), md, flags=re.DOTALL)
md = re.sub(r'\\begin\{abstract\}(.*?)\\end\{abstract\}', r'**Abstract** \1', md, flags=re.DOTALL)
md = re.sub(r'\\begin\{abstract\}', r'**Abstract**', md)
md = re.sub(r'\\eqno\{\((.*?)\)\}', r'\\tag{\1}', md)
md = md.replace("\[ \\\\", "$$ \\\\").replace("\\\\ \]", "\\\\ $$")
md = re.sub(r'_ {', r'_{', md)
md = re.sub(r'^ {', r'^{', md)
md = re.sub(r'\n{3,}', r'\n\n', md)
return md
except Exception as e:
print(f"_post_process error: {str(e)}")
return md
# --- General Processing Utilities ---
@dataclass
class ImageDimensions:
original_w: int
original_h: int
padded_w: int
padded_h: int
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
if isinstance(image, str):
image = cv2.imread(image)
img_h, img_w = image.shape[:2]
new_boxes = []
for box in boxes:
best_box = copy.deepcopy(box)
def check_edge(img, current_box, i, is_vertical):
edge = current_box[i]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
if is_vertical:
line = binary[current_box[1] : current_box[3] + 1, edge]
else:
line = binary[edge, current_box[0] : current_box[2] + 1]
transitions = np.abs(np.diff(line))
return np.sum(transitions) / len(transitions)
edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)]
current_box = copy.deepcopy(box)
current_box = [min(max(c, 0), d - 1) for c, d in zip(current_box, [img_w, img_h, img_w, img_h])]
for i, direction, is_vertical in edges:
best_score = check_edge(image, current_box, i, is_vertical)
if best_score <= threshold: continue
for _ in range(max_pixels):
current_box[i] += direction
dim = img_w if i in [0, 2] else img_h
current_box[i] = min(max(current_box[i], 0), dim - 1)
score = check_edge(image, current_box, i, is_vertical)
if score < best_score:
best_score, best_box = score, copy.deepcopy(current_box)
if score <= threshold: break
new_boxes.append(best_box)
return new_boxes
def parse_layout_string(bbox_str):
pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)"
matches = re.finditer(pattern, bbox_str)
return [([float(m.group(i)) for i in range(1, 5)], m.group(5).strip()) for m in matches]
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
try:
top, left = (dims.padded_h - dims.original_h) // 2, (dims.padded_w - dims.original_w) // 2
orig_x1, orig_y1 = max(0, x1 - left), max(0, y1 - top)
orig_x2, orig_y2 = min(dims.original_w, x2 - left), min(dims.original_h, y2 - top)
if orig_x2 <= orig_x1: orig_x2 = min(orig_x1 + 1, dims.original_w)
if orig_y2 <= orig_y1: orig_y2 = min(orig_y1 + 1, dims.original_h)
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
except Exception as e:
print(f"map_to_original_coordinates error: {str(e)}")
return 0, 0, min(100, dims.original_w), min(100, dims.original_h)
def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None):
try:
x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h)
x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h)
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(dims.padded_w, x2), min(dims.padded_h, y2)
if x2 <= x1: x2 = min(x1 + 1, dims.padded_w)
if y2 <= y1: y2 = min(y1 + 1, dims.padded_h)
x1, y1, x2, y2 = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])[0]
if previous_box:
prev_x1, prev_y1, prev_x2, prev_y2 = previous_box
if (x1 < prev_x2 and x2 > prev_x1) and (y1 < prev_y2 and y2 > prev_y1):
y1 = min(prev_y2, dims.padded_h - 1)
if y2 <= y1: y2 = min(y1 + 1, dims.padded_h)
orig_coords = map_to_original_coordinates(x1, y1, x2, y2, dims)
return x1, y1, x2, y2, *orig_coords, [x1, y1, x2, y2]
except Exception as e:
print(f"process_coordinates error: {str(e)}")
orig_coords = 0, 0, min(100, dims.original_w), min(100, dims.original_h)
return 0, 0, 100, 100, *orig_coords, [0, 0, 100, 100]
def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
try:
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
original_h, original_w = image_cv.shape[:2]
max_size = max(original_h, original_w)
top, bottom = (max_size - original_h) // 2, max_size - original_h - ((max_size - original_h) // 2)
left, right = (max_size - original_w) // 2, max_size - original_w - ((max_size - original_w) // 2)
padded_image = cv2.copyMakeBorder(image_cv, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(0, 0, 0))
padded_h, padded_w = padded_image.shape[:2]
dims = ImageDimensions(original_w, original_h, padded_w, padded_h)
return padded_image, dims
except Exception as e:
print(f"prepare_image error: {str(e)}")
dims = ImageDimensions(image.width, image.height, image.width, image.height)
return np.zeros((image.height, image.width, 3), dtype=np.uint8), dims
# =================================================================================
# --- MODEL WRAPPER CLASSES ---
# =================================================================================
class DotOcrModel:
def __init__(self, device: str):
self.model, self.processor, self.device = None, None, device
self.model_id, self.model_path = "rednote-hilab/dots.ocr", "./models/dots-ocr-local"
@spaces.GPU()
def load_model(self):
if self.model is None:
print("Loading dot.ocr model...")
snapshot_download(repo_id=self.model_id, local_dir=self.model_path, local_dir_use_symlinks=False)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path, attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)
self.processor = AutoProcessor.from_pretrained(self.model_path, trust_remote_code=True)
print("dot.ocr model loaded.")
@staticmethod
def smart_resize(height, width, factor, min_pixels, max_pixels):
if max(height, width) / min(height, width) > 200: raise ValueError("Aspect ratio too high")
h_bar, w_bar = max(factor, round(height / factor) * factor), max(factor, round(width / factor) * factor)
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar, w_bar = round(height / beta / factor) * factor, round(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar, w_bar = round(height * beta / factor) * factor, round(width / beta / factor) * factor
return h_bar, w_bar
def fetch_image(self, image_input, min_pixels, max_pixels):
image = image_input.convert('RGB')
height, width = self.smart_resize(image.height, image.width, IMAGE_FACTOR, min_pixels, max_pixels)
return image.resize((width, height), Image.LANCZOS)
@spaces.GPU()
def inference(self, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
self.load_model()
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, _ = process_vision_info(messages)
inputs = self.processor(text=[text], images=image_inputs, padding=True, return_tensors="pt").to(self.device)
with torch.no_grad():
generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
generated_ids_trimmed = [out[len(ins):] for ins, out in zip(inputs.input_ids, generated_ids)]
return self.processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
def process_image(self, image: Image.Image, min_pixels: int, max_pixels: int):
resized_image = self.fetch_image(image, min_pixels, max_pixels)
raw_output = self.inference(resized_image, DOT_OCR_PROMPT)
result = {'original_image': image, 'raw_output': raw_output, 'layout_result': None}
try:
layout_data = json.loads(raw_output)
result['layout_result'] = layout_data
result['processed_image'] = self.draw_layout_on_image(image, layout_data)
result['markdown_content'] = self.layoutjson2md(image, layout_data)
except (json.JSONDecodeError, KeyError) as e:
print(f"Failed to parse or process dot.ocr layout: {e}")
result['processed_image'] = image
result['markdown_content'] = f"### Error processing output\nRaw model output:\n```json\n{raw_output}\n```"
return result
def draw_layout_on_image(self, image: Image.Image, layout_data: List[Dict]) -> Image.Image:
img_copy, draw = image.copy(), ImageDraw.Draw(img_copy)
colors = {'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1', 'List-item': '#96CEB4',
'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD', 'Picture': '#FFD93D', 'Section-header': '#6C5CE7',
'Table': '#FD79A8', 'Text': '#74B9FF', 'Title': '#E17055'}
try: font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 15)
except: font = ImageFont.load_default()
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox, category, color = item['bbox'], item['category'], colors.get(category, '#000000')
draw.rectangle(bbox, outline=color, width=3)
label_bbox = draw.textbbox((0, 0), category, font=font)
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 5)
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 4], fill=color)
draw.text((label_x + 2, label_y + 2), category, fill='white', font=font)
return img_copy
def layoutjson2md(self, image: Image.Image, layout_data: List[Dict]) -> str:
md_lines, sorted_items = [], sorted(layout_data, key=lambda x: (x.get('bbox', [0]*4)[1], x.get('bbox', [0]*4)[0]))
for item in sorted_items:
cat, txt, bbox = item.get('category'), item.get('text'), item.get('bbox')
if cat == 'Picture' and bbox:
try:
x1, y1, x2, y2 = max(0, int(bbox[0])), max(0, int(bbox[1])), min(image.width, int(bbox[2])), min(image.height, int(bbox[3]))
if x2 > x1 and y2 > y1:
cropped = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
md_lines.append(f"\n")
except Exception: md_lines.append("\n")
elif not txt: continue
elif cat == 'Title': md_lines.append(f"# {txt}\n")
elif cat == 'Section-header': md_lines.append(f"## {txt}\n")
elif cat == 'List-item': md_lines.append(f"- {txt}\n")
elif cat == 'Formula': md_lines.append(f"$$\n{txt}\n$$\n")
elif cat == 'Caption': md_lines.append(f"*{txt}*\n")
elif cat == 'Footnote': md_lines.append(f"^{txt}^\n")
elif cat in ['Text', 'Table']: md_lines.append(f"{txt}\n")
return "\n".join(md_lines)
class DolphinModel:
def __init__(self, device: str):
self.model, self.processor, self.tokenizer, self.device = None, None, None, device
self.model_id = "ByteDance/Dolphin"
@spaces.GPU()
def load_model(self):
if self.model is None:
print("Loading Dolphin model...")
self.processor = AutoProcessor.from_pretrained(self.model_id)
self.model = VisionEncoderDecoderModel.from_pretrained(self.model_id).eval().to(self.device).half()
self.tokenizer = self.processor.tokenizer
print("Dolphin model loaded.")
@spaces.GPU()
def model_chat(self, prompt, image):
self.load_model()
images = image if isinstance(image, list) else [image]
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
batch_inputs = self.processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(self.device)
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = self.tokenizer(prompts, add_special_tokens=False, return_tensors="pt")
batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
outputs = self.model.generate(
pixel_values=batch_pixel_values, decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask, max_length=4096,
pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id,
use_cache=True, bad_words_ids=[[self.tokenizer.unk_token_id]],
return_dict_in_generate=True, do_sample=False, num_beams=1, repetition_penalty=1.1
)
sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
results = [seq.replace(p, "").replace("<pad>", "").replace("</s>", "").strip() for p, seq in zip(prompts, sequences)]
return results if isinstance(image, list) else results[0]
def process_elements(self, layout_str: str, image: Image.Image, max_batch_size: int = 16):
padded_image, dims = prepare_image(image)
layout_results = parse_layout_string(layout_str)
elements, reading_order = [], 0
for bbox, label in layout_results:
try:
coords = process_coordinates(bbox, padded_image, dims)
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2 = coords[:8]
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
elements.append({"crop": pil_crop, "label": label, "bbox": [orig_x1, orig_y1, orig_x2, orig_y2], "reading_order": reading_order})
reading_order += 1
except Exception as e:
print(f"Error processing Dolphin element bbox {bbox}: {e}")
text_elems = self.process_element_batch([e for e in elements if e['label'] != 'tab' and e['label'] != 'fig'], "Read text in the image.", max_batch_size)
table_elems = self.process_element_batch([e for e in elements if e['label'] == 'tab'], "Parse the table in the image.", max_batch_size)
fig_elems = [{"label": e['label'], "bbox": e['bbox'], "text": "", "reading_order": e['reading_order']} for e in elements if e['label'] == 'fig']
all_results = sorted(text_elems + table_elems + fig_elems, key=lambda x: x['reading_order'])
return all_results
def process_element_batch(self, elements, prompt, max_batch_size=16):
results = []
for i in range(0, len(elements), max_batch_size):
batch = elements[i:i+max_batch_size]
crops = [elem["crop"] for elem in batch]
prompts = [prompt] * len(crops)
batch_results = self.model_chat(prompts, crops)
for j, res_text in enumerate(batch_results):
elem = batch[j]
results.append({"label": elem["label"], "bbox": elem["bbox"], "text": res_text.strip(), "reading_order": elem["reading_order"]})
return results
def process_image(self, image: Image.Image):
layout_output = self.model_chat("Parse the reading order of this document.", image)
recognition_results = self.process_elements(layout_output, image)
markdown_content = MarkdownConverter().convert(recognition_results)
return {
'original_image': image, 'processed_image': image, 'markdown_content': markdown_content,
'layout_result': recognition_results, 'raw_output': layout_output
}
# =================================================================================
# --- GRADIO UI AND EVENT HANDLERS ---
# =================================================================================
def create_gradio_interface():
"""Create the main Gradio interface and define all event handlers"""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot.OCR Comparator") as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">β</span><strong></strong>OCR Comparator</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image/PDF to markdown document processing
</p>
</div>
""")
with gr.Row(elem_classes=["main-container"]):
with gr.Column(scale=1):
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".pdf"], type="filepath")
with gr.Row():
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
model_choice = gr.Radio(choices=["dot.ocr", "Dolphin"], label="Select Model", value="dot.ocr")
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=400)
with gr.Row():
prev_page_btn = gr.Button("β Previous")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next βΆ")
with gr.Accordion("Advanced Settings (dot.ocr only)", open=False):
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels", step=1)
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels", step=1)
with gr.Row():
process_btn = gr.Button("π Process Document", variant="primary", elem_classes=["process-button"], scale=2)
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("π Extracted Content"):
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", elem_id="markdown_output")
with gr.Tab("πΌοΈ Processed Image"):
processed_image_output = gr.Image(label="Image with Layout Detection", type="pil", interactive=False)
with gr.Tab("π Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results")
def load_file_for_preview(file_path: str) -> Tuple[List[Image.Image], str]:
images = []
if not file_path or not os.path.exists(file_path): return [], "No file selected"
try:
ext = os.path.splitext(file_path)[1].lower()
if ext == '.pdf':
doc = fitz.open(file_path)
for page in doc:
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
images.append(Image.open(BytesIO(pix.tobytes("ppm"))).convert('RGB'))
doc.close()
elif ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
images.append(Image.open(file_path).convert('RGB'))
return images, f"Page 1 / {len(images)}"
except Exception as e:
print(f"Error loading file for preview: {e}")
return [], f"Error loading file: {e}"
def handle_file_upload(file_path):
global PDF_CACHE
images, page_info_str = load_file_for_preview(file_path)
if not images:
return None, page_info_str
PDF_CACHE = {
"images": images, "current_page": 0, "total_pages": len(images),
"is_parsed": False, "results": [], "model_used": None
}
return images[0], f'<div class="page-info">{page_info_str}</div>'
def process_document(file_path, model_name, min_pix, max_pix):
global PDF_CACHE
if not file_path or not PDF_CACHE["images"]:
return "Please upload a file first.", None, None
if model_name not in MODELS:
if model_name == 'dot.ocr': MODELS[model_name] = DotOcrModel(DEVICE)
elif model_name == 'Dolphin': MODELS[model_name] = DolphinModel(DEVICE)
model = MODELS[model_name]
all_results, all_markdown = [], []
for i, img in enumerate(PDF_CACHE["images"]):
gr.Info(f"Processing page {i+1}/{len(PDF_CACHE['images'])} with {model_name}...")
if model_name == 'dot.ocr':
result = model.process_image(img, int(min_pix), int(max_pix))
else: # Dolphin
result = model.process_image(img)
all_results.append(result)
if result.get('markdown_content'):
all_markdown.append(f"### Page {i+1}\n\n{result['markdown_content']}")
PDF_CACHE.update({"results": all_results, "is_parsed": True, "model_used": model_name})
if not all_results: return "Processing failed.", None, None
first_result = all_results[0]
combined_md = "\n\n---\n\n".join(all_markdown)
return combined_md, first_result.get('processed_image'), first_result.get('layout_result')
def turn_page(direction):
global PDF_CACHE
if not PDF_CACHE["images"] or not PDF_CACHE["is_parsed"]:
return None, '<div class="page-info">No file parsed</div>', "No results yet", None, None
if direction == "prev": PDF_CACHE["current_page"] = max(0, PDF_CACHE["current_page"] - 1)
else: PDF_CACHE["current_page"] = min(PDF_CACHE["total_pages"] - 1, PDF_CACHE["current_page"] + 1)
idx = PDF_CACHE["current_page"]
page_info_html = f'<div class="page-info">Page {idx + 1} / {PDF_CACHE["total_pages"]}</div>'
preview_img = PDF_CACHE["images"][idx]
result = PDF_CACHE["results"][idx]
all_md = [f"### Page {i+1}\n\n{res.get('markdown_content', '')}" for i, res in enumerate(PDF_CACHE["results"])]
md_content = "\n\n---\n\n".join(all_md) if PDF_CACHE["total_pages"] > 1 else result.get('markdown_content', 'No content')
return preview_img, page_info_html, md_content, result.get('processed_image'), result.get('layout_result')
def clear_all():
global PDF_CACHE
PDF_CACHE = {"images": [], "current_page": 0, "total_pages": 0, "is_parsed": False, "results": [], "model_used": None}
return None, None, '<div class="page-info">No file loaded</div>', "Click 'Process Document' to see extracted content...", None, None
# --- Wire UI components ---
file_input.change(handle_file_upload, inputs=file_input, outputs=[image_preview, page_info])
process_btn.click(
process_document,
inputs=[file_input, model_choice, min_pixels, max_pixels],
outputs=[markdown_output, processed_image_output, json_output]
)
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image_output, json_output])
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image_output, json_output])
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, markdown_output, processed_image_output, json_output])
return demo
if __name__ == "__main__":
# Create example directory if it doesn't exist
if not os.path.exists("examples"):
os.makedirs("examples")
print("Created 'examples' directory. Please add sample images/PDFs there.")
app = create_gradio_interface()
app.queue().launch(debug=True, show_error=True) |