Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import math | |
import os | |
import traceback | |
from io import BytesIO | |
from typing import Any, Dict, List, Optional, Tuple | |
import re | |
import time | |
from threading import Thread | |
import gradio as gr | |
import requests | |
import torch | |
from PIL import Image | |
from transformers import ( | |
Qwen2_5_VLForConditionalGeneration, | |
AutoProcessor, | |
TextIteratorStreamer, | |
) | |
# --- Constants and Model Setup --- | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# The detailed prompt to instruct the model to generate structured JSON | |
prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox. | |
1. Bbox format: [x1, y1, x2, y2] | |
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. | |
3. Text Extraction & Formatting Rules: | |
- Picture: For the 'Picture' category, the text field should be omitted. | |
- Formula: Format its text as LaTeX. | |
- Table: For tables, provide the content in a structured format within the JSON. | |
- All Others (Text, Title, etc.): Format their text as Markdown. | |
4. Constraints: | |
- The output text must be the original text from the image, with no translation. | |
- All layout elements must be sorted according to human reading order. | |
5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```. | |
""" | |
# Load models | |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825" | |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True) | |
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713" | |
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True) | |
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_C = "nanonets/Nanonets-OCR-s" | |
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True) | |
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16 | |
).to(device).eval() | |
MODEL_ID_G = "echo840/MonkeyOCR" | |
SUBFOLDER = "Recognition" | |
processor_g = AutoProcessor.from_pretrained( | |
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER | |
) | |
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16 | |
).to(device).eval() | |
# --- Utility Functions --- | |
def layoutjson2md(layout_data: List[Dict]) -> str: | |
"""Converts the structured JSON layout data into formatted Markdown.""" | |
markdown_lines = [] | |
try: | |
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0])) | |
for item in sorted_items: | |
category = item.get('category', '') | |
text = item.get('text', '') | |
if not text: | |
continue | |
if category == 'Title': | |
markdown_lines.append(f"# {text}\n") | |
elif category == 'Section-header': | |
markdown_lines.append(f"## {text}\n") | |
elif category == 'Table': | |
# Check if the text is a dictionary representing a structured table | |
if isinstance(text, dict) and 'header' in text and 'rows' in text: | |
header = '| ' + ' | '.join(map(str, text['header'])) + ' |' | |
separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |' | |
rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']] | |
markdown_lines.append(header) | |
markdown_lines.append(separator) | |
markdown_lines.extend(rows) | |
markdown_lines.append("\n") | |
else: | |
# Fallback for unstructured table text | |
markdown_lines.append(f"{text}\n") | |
else: | |
markdown_lines.append(f"{text}\n") | |
except Exception as e: | |
print(f"Error converting to markdown: {e}") | |
return "### Error converting JSON to Markdown." | |
return "\n".join(markdown_lines) | |
# --- Core Application Logic --- | |
def process_document_stream(model_name: str, image: Image.Image, text_prompt: str, max_new_tokens: int): | |
""" | |
Main generator function that streams raw model output and then processes it into | |
formatted Markdown and structured JSON for the UI. | |
""" | |
if image is None: | |
yield "Please upload an image.", "Please upload an image.", None | |
return | |
# Select the model and processor | |
if model_name == "Camel-Doc-OCR-062825": processor, model = processor_m, model_m | |
elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t | |
elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c | |
elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g | |
else: | |
yield "Invalid model selected.", "Invalid model selected.", None | |
return | |
# Prepare model inputs | |
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device) | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
# Start generation in a separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Stream raw output to the UI | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
# Yield the raw stream and placeholders for the final results | |
yield buffer, "β³ Formatting Markdown...", {"status": "processing"} | |
# After streaming is complete, process the final buffer | |
try: | |
# Extract the JSON object from the buffer | |
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer) | |
if not json_match: | |
raise json.JSONDecodeError("JSON object not found in the model's output.", buffer, 0) | |
json_str = json_match.group(1) | |
layout_data = json.loads(json_str) | |
# Convert the parsed JSON to formatted markdown | |
markdown_content = layoutjson2md(layout_data) | |
# Yield the final, complete results | |
yield buffer, markdown_content, layout_data | |
except json.JSONDecodeError as e: | |
print(f"JSON parsing failed: {e}") | |
error_md = f"β **Error:** Failed to parse JSON from the model's output.\n\nSee the raw output stream for details." | |
error_json = {"error": "JSONDecodeError", "details": str(e), "raw_output": buffer} | |
yield buffer, error_md, error_json | |
except Exception as e: | |
print(f"An unexpected error occurred: {e}") | |
yield buffer, f"β An unexpected error occurred: {e}", None | |
# --- Gradio UI Definition --- | |
def create_gradio_interface(): | |
"""Builds and returns the Gradio web interface.""" | |
css = """ | |
.main-container { max-width: 1400px; margin: 0 auto; } | |
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} | |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } | |
""" | |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo: | |
gr.HTML(""" | |
<div class="title" style="text-align: center"> | |
<h1>Dot<span style="color: red;">β</span><strong></strong>OCR Comparator</h1> | |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;"> | |
Advanced Vision-Language Model for Image Layout Analysis | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
# --- Left Column (Inputs) --- | |
with gr.Column(scale=1): | |
model_choice = gr.Radio( | |
choices=["Camel-Doc-OCR-062825", "MonkeyOCR-Recognition", "Nanonets-OCR-s", "Megalodon-OCR-Sync-0713"], | |
label="Select Model", | |
value="Camel-Doc-OCR-062825" | |
) | |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload']) | |
with gr.Accordion("Advanced Settings", open=False): | |
max_new_tokens = gr.Slider(minimum=1000, maximum=8192, value=4096, step=256, label="Max New Tokens") | |
process_btn = gr.Button("π Process Document", variant="primary", elem_classes=["process-button"], size="lg") | |
clear_btn = gr.Button("ποΈ Clear All", variant="secondary") | |
# --- Right Column (Outputs) --- | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.Tab("π Extracted Content"): | |
raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=15, show_copy_button=True) | |
with gr.Accordion("(Formatted Result)", open=True): | |
markdown_output = gr.Markdown(label="Formatted Markdown (from JSON)") | |
with gr.Tab("π Layout Analysis Results"): | |
json_output = gr.JSON(label="Structured Layout Data (JSON)", value=None) | |
# --- Event Handlers --- | |
def clear_all_outputs(): | |
"""Resets all input and output fields to their default state.""" | |
return None, "Raw output will appear here.", "Formatted results will appear here.", None | |
# Connect the process button to the main generator function | |
process_btn.click( | |
fn=process_document_stream, | |
inputs=[model_choice, image_input, gr.Textbox(value=prompt, visible=False), max_new_tokens], | |
outputs=[raw_output_stream, markdown_output, json_output] | |
) | |
# Connect the clear button | |
clear_btn.click( | |
clear_all_outputs, | |
outputs=[image_input, raw_output_stream, markdown_output, json_output] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860, show_error=True) |