File size: 34,593 Bytes
db537bc
c152910
db537bc
 
 
 
c152910
db537bc
 
9180057
4148e9b
f17f462
db537bc
9180057
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
 
db537bc
 
 
 
c152910
db537bc
4148e9b
db537bc
c152910
4148e9b
 
 
 
db537bc
4148e9b
 
 
db537bc
4148e9b
 
c152910
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
db537bc
 
 
c152910
db537bc
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
4148e9b
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
4148e9b
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4148e9b
db537bc
 
f17f462
db537bc
 
c152910
db537bc
 
 
 
 
 
 
 
 
 
f17f462
 
 
db537bc
 
 
 
 
 
 
f17f462
db537bc
 
f17f462
db537bc
 
 
 
 
f17f462
 
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
db537bc
c152910
 
 
db537bc
 
 
 
 
 
 
 
 
c152910
 
db537bc
 
c152910
db537bc
c152910
 
f17f462
c152910
 
 
 
 
db537bc
c152910
db537bc
 
 
 
 
 
 
 
 
 
4148e9b
 
 
 
 
 
db537bc
 
 
 
 
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
f17f462
db537bc
 
 
 
 
 
 
 
 
 
 
4148e9b
db537bc
 
 
 
 
 
 
 
 
 
 
f17f462
db537bc
 
 
 
4148e9b
db537bc
 
 
 
f17f462
 
 
db537bc
 
f17f462
db537bc
 
 
 
 
 
c152910
 
 
db537bc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
import io
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
from huggingface_hub import snapshot_download
from qwen_vl_utils import process_vision_info
from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions
from utils.markdown_utils import MarkdownConverter

# Define device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load dot.ocr model
dot_ocr_model_id = "rednote-hilab/dots.ocr"
dot_ocr_model = AutoModelForCausalLM.from_pretrained(
    dot_ocr_model_id,
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)
dot_ocr_processor = AutoProcessor.from_pretrained(
    dot_ocr_model_id,
    trust_remote_code=True
)

# Load Dolphin model
dolphin_model_id = "ByteDance/Dolphin"
dolphin_processor = AutoProcessor.from_pretrained(dolphin_model_id)
dolphin_model = VisionEncoderDecoderModel.from_pretrained(dolphin_model_id)
dolphin_model.eval()
dolphin_model.to(device)
dolphin_model = dolphin_model.half()
dolphin_tokenizer = dolphin_processor.tokenizer

# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28

# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]

2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].

3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.

4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.

5. Final Output: The entire output must be a single JSON object.
"""

# Utility functions
def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor

def smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 3136,
    max_pixels: int = 11289600,
):
    """Rescales the image so that the following conditions are met:
    1. Both dimensions (height and width) are divisible by 'factor'.
    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
    3. The aspect ratio of the image is maintained as closely as possible.
    """
    if max(height, width) / min(height, width) > 200:
        raise ValueError(
            f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
        )
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))

    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = round_by_factor(height / beta, factor)
        w_bar = round_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = round_by_factor(height * beta, factor)
        w_bar = round_by_factor(width * beta, factor)
    return h_bar, w_bar

def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
    """Fetch and process an image"""
    if isinstance(image_input, str):
        if image_input.startswith(("http://", "https://")):
            response = requests.get(image_input)
            image = Image.open(BytesIO(response.content)).convert('RGB')
        else:
            image = Image.open(image_input).convert('RGB')
    elif isinstance(image_input, Image.Image):
        image = image_input.convert('RGB')
    else:
        raise ValueError(f"Invalid image input type: {type(image_input)}")
    
    if min_pixels is not None or max_pixels is not None:
        min_pixels = min_pixels or MIN_PIXELS
        max_pixels = max_pixels or MAX_PIXELS
        height, width = smart_resize(
            image.height, 
            image.width, 
            factor=IMAGE_FACTOR,
            min_pixels=min_pixels,
            max_pixels=max_pixels
        )
        image = image.resize((width, height), Image.LANCZOS)
    
    return image

def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
    """Load images from PDF file"""
    images = []
    try:
        pdf_document = pymupdf.open(pdf_path)
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            mat = pymupdf.Matrix(2.0, 2.0)  # Increase resolution
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("ppm")
            image = Image.open(BytesIO(img_data)).convert('RGB')
            images.append(image)
        pdf_document.close()
    except Exception as e:
        print(f"Error loading PDF: {e}")
        return []
    return images

def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
    """Draw layout bounding boxes on image"""
    img_copy = image.copy()
    draw = ImageDraw.Draw(img_copy)
    
    colors = {
        'Caption': '#FF6B6B',
        'Footnote': '#4ECDC4', 
        'Formula': '#45B7D1',
        'List-item': '#96CEB4',
        'Page-footer': '#FFEAA7',
        'Page-header': '#DDA0DD',
        'Picture': '#FFD93D',
        'Section-header': '#6C5CE7',
        'Table': '#FD79A8',
        'Text': '#74B9FF',
        'Title': '#E17055'
    }
    
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12)
    except Exception:
        font = ImageFont.load_default()
    
    for item in layout_data:
        if 'bbox' in item and 'category' in item:
            bbox = item['bbox']
            category = item['category']
            color = colors.get(category, '#000000')
            draw.rectangle(bbox, outline=color, width=2)
            label = category
            label_bbox = draw.textbbox((0, 0), label, font=font)
            label_width = label_bbox[2] - label_bbox[0]
            label_height = label_bbox[3] - label_bbox[1]
            label_x = bbox[0]
            label_y = max(0, bbox[1] - label_height - 2)
            draw.rectangle(
                [label_x, label_y, label_x + label_width + 4, label_y + label_height + 2],
                fill=color
            )
            draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
    return img_copy

def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
    """Convert layout JSON to markdown format"""
    import base64
    from io import BytesIO
    
    markdown_lines = []
    
    try:
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get(text_key, '')
            bbox = item.get('bbox', [])
            
            if category == 'Picture':
                if bbox and len(bbox) == 4:
                    try:
                        x1, y1, x2, y2 = bbox
                        x1, y1 = max(0, int(x1)), max(0, int(y1))
                        x2, y2 = min(image.width, int(x2)), min(image.height, int(y2))
                        
                        if x2 > x1 and y2 > y1:
                            cropped_img = image.crop((x1, y1, x2, y2))
                            buffer = BytesIO()
                            cropped_img.save(buffer, format='PNG')
                            img_data = base64.b64encode(buffer.getvalue()).decode()
                            markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
                        else:
                            markdown_lines.append("![Image](Image region detected)\n")
                    except Exception as e:
                        print(f"Error processing image region: {e}")
                        markdown_lines.append("![Image](Image detected)\n")
                else:
                    markdown_lines.append("![Image](Image detected)\n")
            elif not text:
                continue
            elif category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Text':
                markdown_lines.append(f"{text}\n")
            elif category == 'List-item':
                markdown_lines.append(f"- {text}\n")
            elif category == 'Table':
                if text.strip().startswith('<'):
                    markdown_lines.append(f"{text}\n")
                else:
                    markdown_lines.append(f"**Table:** {text}\n")
            elif category == 'Formula':
                if text.strip().startswith('$') or '\\' in text:
                    markdown_lines.append(f"$$\n{text}\n$$\n")
                else:
                    markdown_lines.append(f"**Formula:** {text}\n")
            elif category == 'Caption':
                markdown_lines.append(f"*{text}*\n")
            elif category == 'Footnote':
                markdown_lines.append(f"^{text}^\n")
            elif category in ['Page-header', 'Page-footer']:
                continue
            else:
                markdown_lines.append(f"{text}\n")
            markdown_lines.append("")
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return str(layout_data)
    return "\n".join(markdown_lines)

# Global state variables
pdf_cache = {
    "images": [],
    "current_page": 0,
    "total_pages": 0,
    "file_type": None,
    "is_parsed": False,
    "results": []
}

@spaces.GPU()
def dot_ocr_inference(image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
    """Run inference on an image with the given prompt using dot.ocr model"""
    try:
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": prompt}
                ]
            }
        ]
        text = dot_ocr_processor.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = dot_ocr_processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(device)
        with torch.no_grad():
            generated_ids = dot_ocr_model.generate(
                **inputs,
                max_new_tokens=max_new_tokens,
                do_sample=False,
                temperature=0.1
            )
        generated_ids_trimmed = [
            out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = dot_ocr_processor.batch_decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )
        return output_text[0] if output_text else ""
    except Exception as e:
        print(f"Error during dot.ocr inference: {e}")
        return f"Error during inference: {str(e)}"

def process_image_dot_ocr(image: Image.Image, min_pixels: Optional[int] = None, max_pixels: Optional[int] = None) -> Dict[str, Any]:
    """Process a single image with the dot.ocr model"""
    try:
        if min_pixels is not None or max_pixels is not None:
            image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
        raw_output = dot_ocr_inference(image, prompt)
        result = {
            'original_image': image,
            'raw_output': raw_output,
            'processed_image': image,
            'layout_result': None,
            'markdown_content': None
        }
        try:
            layout_data = json.loads(raw_output)
            result['layout_result'] = layout_data
            processed_image = draw_layout_on_image(image, layout_data)
            result['processed_image'] = processed_image
            markdown_content = layoutjson2md(image, layout_data, text_key='text')
            result['markdown_content'] = markdown_content
        except json.JSONDecodeError:
            print("Failed to parse JSON output, using raw output")
            result['markdown_content'] = raw_output
        return result
    except Exception as e:
        print(f"Error processing image with dot.ocr: {e}")
        return {
            'original_image': image,
            'raw_output': f"Error processing image: {str(e)}",
            'processed_image': image,
            'layout_result': None,
            'markdown_content': f"Error processing image: {str(e)}"
        }

def process_all_pages_dot_ocr(file_path, min_pixels, max_pixels):
    """Process all pages of a document with dot.ocr model"""
    if file_path.lower().endswith('.pdf'):
        images = load_images_from_pdf(file_path)
    else:
        images = [Image.open(file_path).convert('RGB')]
    results = []
    for img in images:
        result = process_image_dot_ocr(img, min_pixels, max_pixels)
        results.append(result)
    return results

# Dolphin model functions
@spaces.GPU()
def dolphin_model_chat(prompt, image):
    """Process an image or batch of images with the given prompt(s) using Dolphin model"""
    is_batch = isinstance(image, list)
    if not is_batch:
        images = [image]
        prompts = [prompt]
    else:
        images = image
        prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
    batch_inputs = dolphin_processor(images, return_tensors="pt", padding=True)
    batch_pixel_values = batch_inputs.pixel_values.half().to(device)
    prompts = [f"<s>{p} <Answer/>" for p in prompts]
    batch_prompt_inputs = dolphin_tokenizer(
        prompts,
        add_special_tokens=False,
        return_tensors="pt"
    )
    batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
    batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
    outputs = dolphin_model.generate(
        pixel_values=batch_pixel_values,
        decoder_input_ids=batch_prompt_ids,
        decoder_attention_mask=batch_attention_mask,
        min_length=1,
        max_length=4096,
        pad_token_id=dolphin_tokenizer.pad_token_id,
        eos_token_id=dolphin_tokenizer.eos_token_id,
        use_cache=True,
        bad_words_ids=[[dolphin_tokenizer.unk_token_id]],
        return_dict_in_generate=True,
        do_sample=False,
        num_beams=1,
        repetition_penalty=1.1
    )
    sequences = dolphin_tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
    results = []
    for i, sequence in enumerate(sequences):
        cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
        results.append(cleaned)
    if not is_batch:
        return results[0]
    return results

def process_element_batch_dolphin(elements, prompt, max_batch_size=16):
    """Process elements of the same type in batches for Dolphin model"""
    results = []
    batch_size = min(len(elements), max_batch_size)
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        prompts_list = [prompt] * len(crops_list)
        batch_results = dolphin_model_chat(prompts_list, crops_list)
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
    return results

def process_page_dolphin(image_path):
    """Process a single page with Dolphin model"""
    pil_image = Image.open(image_path).convert("RGB")
    layout_output = dolphin_model_chat("Parse the reading order of this document.", pil_image)
    padded_image, dims = prepare_image(pil_image)
    recognition_results = process_elements_dolphin(layout_output, padded_image, dims)
    return recognition_results

def process_elements_dolphin(layout_results, padded_image, dims):
    """Parse all document elements for Dolphin model"""
    layout_results = parse_layout_string(layout_results)
    text_elements = []
    table_elements = []
    figure_results = []
    previous_box = None
    reading_order = 0
    for bbox, label in layout_results:
        try:
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and (cropped.shape[0] > 3 and cropped.shape[1] > 3):
                if label == "fig":
                    try:
                        pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                        buffered = io.BytesIO()
                        pil_crop.save(buffered, format="PNG")
                        img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
                        figure_results.append(
                            {
                                "label": label,
                                "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                                "text": img_base64,
                                "reading_order": reading_order,
                            }
                        )
                    except Exception as e:
                        print(f"Error encoding figure to base64: {e}")
                        figure_results.append(
                            {
                                "label": label,
                                "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                                "text": "",
                                "reading_order": reading_order,
                            }
                        )
                else:
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    if label == "tab":
                        table_elements.append(element_info)
                    else:
                        text_elements.append(element_info)
            reading_order += 1
        except Exception as e:
            print(f"Error processing bbox with label {label}: {str(e)}")
            continue
    recognition_results = figure_results.copy()
    if text_elements:
        text_results = process_element_batch_dolphin(text_elements, "Read text in the image.")
        recognition_results.extend(text_results)
    if table_elements:
        table_results = process_element_batch_dolphin(table_elements, "Parse the table in the image.")
        recognition_results.extend(table_results)
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))
    return recognition_results

def generate_markdown(recognition_results):
    """Generate markdown from recognition results for Dolphin model"""
    converter = MarkdownConverter()
    return converter.convert(recognition_results)

def convert_all_pdf_pages_to_images(file_path, target_size=896):
    """Convert all pages of a PDF to images for Dolphin model"""
    if file_path is None:
        return []
    try:
        file_ext = os.path.splitext(file_path)[1].lower()
        if file_ext == '.pdf':
            doc = pymupdf.open(file_path)
            image_paths = []
            for page_num in range(len(doc)):
                page = doc[page_num]
                rect = page.rect
                scale = target_size / max(rect.width, rect.height)
                mat = pymupdf.Matrix(scale, scale)
                pix = page.get_pixmap(matrix=mat)
                img_data = pix.tobytes("png")
                pil_image = Image.open(io.BytesIO(img_data))
                with tempfile.NamedTemporaryFile(suffix=f"_page_{page_num}.png", delete=False) as tmp_file:
                    pil_image.save(tmp_file.name, "PNG")
                    image_paths.append(tmp_file.name)
            doc.close()
            return image_paths
        else:
            converted_path = convert_to_image(file_path, target_size)
            return [converted_path] if converted_path else []
    except Exception as e:
        print(f"Error converting PDF pages to images: {e}")
        return []

def convert_to_image(file_path, target_size=896, page_num=0):
    """Convert input file to image format for Dolphin model"""
    if file_path is None:
        return None
    try:
        file_ext = os.path.splitext(file_path)[1].lower()
        if file_ext == '.pdf':
            doc = pymupdf.open(file_path)
            if page_num >= len(doc):
                page_num = 0
            page = doc[page_num]
            rect = page.rect
            scale = target_size / max(rect.width, rect.height)
            mat = pymupdf.Matrix(scale, scale)
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("png")
            pil_image = Image.open(io.BytesIO(img_data))
            with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
                pil_image.save(tmp_file.name, "PNG")
                doc.close()
                return tmp_file.name
        else:
            pil_image = Image.open(file_path).convert("RGB")
            w, h = pil_image.size
            if max(w, h) > target_size:
                if w > h:
                    new_w, new_h = target_size, int(h * target_size / w)
                else:
                    new_w, new_h = int(w * target_size / h), target_size
                pil_image = pil_image.resize((new_w, new_h), Image.Resampling.LANCZOS)
            with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
                pil_image.save(tmp_file.name, "PNG")
                return tmp_file.name
    except Exception as e:
        print(f"Error converting file to image: {e}")
        return file_path

def process_all_pages_dolphin(file_path):
    """Process all pages of a document with Dolphin model"""
    image_paths = convert_all_pdf_pages_to_images(file_path)
    per_page_results = []
    for image_path in image_paths:
        try:
            original_image = Image.open(image_path).convert('RGB')
            recognition_results = process_page_dolphin(image_path)
            markdown_content = generate_markdown(recognition_results)
            placeholder_text = "Layout visualization not available for Dolphin model"
            processed_image = create_placeholder_image(placeholder_text, size=(original_image.width, original_image.height))
            per_page_results.append({
                'original_image': original_image,
                'processed_image': processed_image,
                'markdown_content': markdown_content,
                'layout_result': recognition_results
            })
        except Exception as e:
            print(f"Error processing page: {e}")
            per_page_results.append({
                'original_image': Image.new('RGB', (100, 100), color='white'),
                'processed_image': create_placeholder_image("Error processing page", size=(100, 100)),
                'markdown_content': f"Error processing page: {str(e)}",
                'layout_result': None
            })
        finally:
            if os.path.exists(image_path):
                os.remove(image_path)
    return per_page_results

def create_placeholder_image(text, size=(400, 200)):
    """Create a placeholder image with text"""
    img = Image.new('RGB', size, color='white')
    draw = ImageDraw.Draw(img)
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 16)
    except Exception:
        font = ImageFont.load_default()
    draw.text((10, 10), text, fill='black', font=font)
    return img

# Gradio interface functions
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
    """Load file for preview (supports PDF and images)"""
    global pdf_cache
    if not file_path or not os.path.exists(file_path):
        return None, "No file selected"
    file_ext = os.path.splitext(file_path)[1].lower()
    try:
        if file_ext == '.pdf':
            images = load_images_from_pdf(file_path)
            if not images:
                return None, "Failed to load PDF"
            pdf_cache.update({
                "images": images,
                "current_page": 0,
                "total_pages": len(images),
                "file_type": "pdf",
                "is_parsed": False,
                "results": []
            })
            return images[0], f"Page 1 / {len(images)}"
        elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
            image = Image.open(file_path).convert('RGB')
            pdf_cache.update({
                "images": [image],
                "current_page": 0,
                "total_pages": 1,
                "file_type": "image",
                "is_parsed": False,
                "results": []
            })
            return image, "Page 1 / 1"
        else:
            return None, f"Unsupported file format: {file_ext}"
    except Exception as e:
        print(f"Error loading file: {e}")
        return None, f"Error loading file: {str(e)}"

def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, str, Optional[Image.Image], Optional[Dict]]:
    """Navigate through PDF pages and update all relevant outputs."""
    global pdf_cache
    if not pdf_cache["images"]:
        return None, "No file loaded", "No results yet", None, None
    if direction == "prev":
        pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
    elif direction == "next":
        pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
    index = pdf_cache["current_page"]
    current_image_preview = pdf_cache["images"][index]
    page_info_html = f"Page {index + 1} / {pdf_cache['total_pages']}"
    if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]):
        result = pdf_cache["results"][index]
        processed_img = result['processed_image']
        markdown_content = result['markdown_content'] or "No content available"
        layout_json = result['layout_result']
    else:
        processed_img = None
        markdown_content = "Page not processed yet"
        layout_json = None
    return current_image_preview, page_info_html, markdown_content, processed_img, layout_json

def process_document(model_choice, file_path, max_tokens, min_pix, max_pix):
    """Process the uploaded document with the selected model"""
    global pdf_cache
    try:
        if not file_path:
            return None, "Please upload a file first.", None
        if model_choice == "dot.ocr":
            results = process_all_pages_dot_ocr(file_path, min_pix, max_pix)
        elif model_choice == "Dolphin":
            results = process_all_pages_dolphin(file_path)
        else:
            raise ValueError("Invalid model choice")
        pdf_cache["results"] = results
        pdf_cache["is_parsed"] = True
        first_result = results[0]
        if model_choice == "dot.ocr":
            processed_img = first_result['processed_image']
            markdown_content = first_result['markdown_content']
            layout_json = first_result['layout_result']
        else:
            processed_img = first_result['processed_image']
            markdown_content = first_result['markdown_content']
            layout_json = first_result['layout_result']
        return processed_img, markdown_content, layout_json
    except Exception as e:
        error_msg = f"Error processing document: {str(e)}"
        print(error_msg)
        return None, error_msg, None

def create_gradio_interface():
    """Create the Gradio interface"""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
    .process-button { 
        border: none !important; 
        color: white !important; 
        font-weight: bold !important; 
        background-color: blue !important;} 
    .process-button:hover { 
        background-color: darkblue !important;
        transform: translateY(-2px) !important; 
        box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    .info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
    .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
    .model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
    .status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
    """
    with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span><strong></strong>OCR Comparator</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced vision-language model for image/PDF to markdown document processing
            </p>
        </div>
        """)
        with gr.Row():
            with gr.Column(scale=1):
                model_choice = gr.Radio(
                    choices=["dot.ocr", "Dolphin"],
                    label="Select Model",
                    value="dot.ocr"
                )
                file_input = gr.File(
                    label="Upload Image or PDF",
                    file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"],
                    type="filepath"
                )
                with gr.Row():
                    examples = gr.Examples(
                        examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
                        inputs=file_input,
                        label="Example Documents"
                    )
                image_preview = gr.Image(
                    label="Preview",
                    type="pil",
                    interactive=False,
                    height=300
                )
                with gr.Row():
                    prev_page_btn = gr.Button("β—€ Previous", size="md")
                    page_info = gr.HTML("No file loaded")
                    next_page_btn = gr.Button("Next β–Ά", size="md")
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(
                        minimum=1000,
                        maximum=32000,
                        value=24000,
                        step=1000,
                        label="Max New Tokens",
                        info="Maximum number of tokens to generate"
                    )
                    min_pixels = gr.Number(
                        value=MIN_PIXELS,
                        label="Min Pixels",
                        info="Minimum image resolution"
                    )
                    max_pixels = gr.Number(
                        value=MAX_PIXELS,
                        label="Max Pixels", 
                        info="Maximum image resolution"
                    )
                process_btn = gr.Button(
                    "πŸš€ Process Document",
                    variant="primary",
                    elem_classes=["process-button"],
                    size="lg"
                )
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("πŸ–ΌοΈ Processed Image"):
                        processed_image = gr.Image(
                            label="Image with Layout Detection",
                            type="pil",
                            interactive=False,
                            height=500
                        )
                    with gr.Tab("πŸ“ Extracted Content"):
                        markdown_output = gr.Markdown(
                            value="Click 'Process Document' to see extracted content...",
                            height=500
                        )
                    with gr.Tab("πŸ“‹ Layout JSON"):
                        json_output = gr.JSON(
                            label="Layout Analysis Results",
                            value=None
                        )

        # Event handlers
        file_input.change(
            lambda file_path: load_file_for_preview(file_path),
            inputs=[file_input],
            outputs=[image_preview, page_info]
        )

        prev_page_btn.click(
            lambda: turn_page("prev"),
            outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
        )

        next_page_btn.click(
            lambda: turn_page("next"),
            outputs=[image_preview, page_info, markdown_output, processed_image, json_output]
        )

        process_btn.click(
            process_document,
            inputs=[model_choice, file_input, max_new_tokens, min_pixels, max_pixels],
            outputs=[processed_image, markdown_output, json_output]
        )

        clear_btn.click(
            lambda: (None, None, "No file loaded", None, "Click 'Process Document' to see extracted content...", None),
            outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output]
        )

    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=10).launch(share=False, debug=True, show_error=True)