Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,321 Bytes
34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 b051d42 34ad363 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import spaces
import json
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import time
from threading import Thread
import gradio as gr
import requests
import torch
from PIL import Image
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from reportlab.lib.pagesizes import A4
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
from reportlab.lib.units import inch
import uuid
# --- Constants and Model Setup ---
MAX_INPUT_TOKEN_LENGTH = 4096
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Model Loading ---
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_C = "nanonets/Nanonets-OCR-s"
processor_c = AutoProcessor.from_pretrained(MODEL_ID_C, trust_remote_code=True)
model_c = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_C, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_G = "echo840/MonkeyOCR"
SUBFOLDER = "Recognition"
processor_g = AutoProcessor.from_pretrained(
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER
)
model_g = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_G, trust_remote_code=True, subfolder=SUBFOLDER, torch_dtype=torch.float16
).to(device).eval()
MODEL_ID_I = "allenai/olmOCR-7B-0725"
processor_i = AutoProcessor.from_pretrained(MODEL_ID_I, trust_remote_code=True)
model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
).to(device).eval()
# --- Prompts ---
ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
# --- PDF Generation Functions ---
def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):
"""Generates a PDF document."""
filename = f"output_{uuid.uuid4()}.pdf"
doc = SimpleDocTemplate(
filename,
pagesize=A4,
rightMargin=inch,
leftMargin=inch,
topMargin=inch,
bottomMargin=inch
)
styles = getSampleStyleSheet()
styles["Normal"].fontSize = int(font_size)
styles["Normal"].leading = int(font_size) * line_spacing
styles["Normal"].alignment = {
"Left": 0,
"Center": 1,
"Right": 2,
"Justified": 4
}[alignment]
story = []
# Add image with size adjustment
image_sizes = {
"Small": (200, 200),
"Medium": (400, 400),
"Large": (600, 600)
}
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
story.append(img)
story.append(Spacer(1, 12))
# Add plain text output
text = Paragraph(plain_text, styles["Normal"])
story.append(text)
doc.build(story)
return filename
# --- Core Application Logic ---
@spaces.GPU
def process_document_stream(model_name: str, image: Image.Image, max_new_tokens: int, font_size: str, line_spacing: float, alignment: str, image_size: str):
"""
Main generator function for OCR task, also generating PDF for preview.
"""
if image is None:
yield "Please upload an image.", "Please upload an image.", None
return
# Select model and processor
if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
elif model_name == "MonkeyOCR-Recognition": processor, model = processor_g, model_g
elif model_name == "olmOCR-7B-0725": processor, model = processor_i, model_i
else:
yield "Invalid model selected.", "Invalid model selected.", None
return
# Save image temporarily for PDF generation
temp_image_path = f"temp_{uuid.uuid4()}.png"
image.save(temp_image_path)
# Prepare model inputs and streamer
text_prompt = ocr_prompt
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Stream raw output to the UI in real-time
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
# Generate PDF with current buffer
pdf_file = generate_pdf(temp_image_path, buffer, font_size, line_spacing, alignment, image_size)
yield buffer, buffer, pdf_file
# Final PDF with complete output
pdf_file = generate_pdf(temp_image_path, buffer, font_size, line_spacing, alignment, image_size)
yield buffer, buffer, pdf_file
# Clean up temporary image file
if os.path.exists(temp_image_path):
os.remove(temp_image_path)
# --- Gradio UI Definition ---
def create_gradio_interface():
"""Builds and returns the Gradio web interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.download-btn { background-color: #35a6d6 !important; color: white !important; }
.download-btn:hover { background-color: #22bcff !important; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Tiny VLMs Lab🧪</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced Vision-Language Model for Image Content Extraction and PDF Generation
</p>
</div>
""")
with gr.Row():
# Left Column (Inputs)
with gr.Column(scale=1):
model_choice = gr.Dropdown(
choices=[
"Camel-Doc-OCR-080125",
"MonkeyOCR-Recognition",
"olmOCR-7B-0725",
"Nanonets-OCR-s",
"Megalodon-OCR-Sync-0713"
],
label="Select Model",
value="Nanonets-OCR-s"
)
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
font_size = gr.Dropdown(
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
value="16",
label="Font Size"
)
line_spacing = gr.Dropdown(
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
value=1.5,
label="Line Spacing"
)
alignment = gr.Dropdown(
choices=["Left", "Center", "Right", "Justified"],
value="Justified",
label="Text Alignment"
)
image_size = gr.Dropdown(
choices=["Small", "Medium", "Large"],
value="Medium",
label="Image Size"
)
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
# Right Column (Outputs)
with gr.Column(scale=2):
with gr.Tabs() as tabs:
with gr.Tab("📝 Extracted Content"):
raw_output_stream = gr.Textbox(label="Raw Model Output Stream", interactive=False, lines=13, show_copy_button=True)
with gr.Row():
examples = gr.Examples(
examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
inputs=image_input,
label="Examples"
)
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
with gr.Tab("📰 README.md"):
with gr.Accordion("(Formatted Result)", open=True):
markdown_output = gr.Markdown(label="Formatted Markdown")
with gr.Tab("📋 PDF Preview"):
pdf_output = gr.File(label="Download PDF", interactive=True)
# Event Handlers
def clear_all_outputs():
return None, "Raw output will appear here.", "Formatted results will appear here.", None
process_btn.click(
fn=process_document_stream,
inputs=[model_choice, image_input, max_new_tokens, font_size, line_spacing, alignment, image_size],
outputs=[raw_output_stream, markdown_output, pdf_output]
)
clear_btn.click(
fn=clear_all_outputs,
outputs=[image_input, raw_output_stream, markdown_output, pdf_output]
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True) |