Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import spaces
|
2 |
import json
|
3 |
-
import math
|
4 |
import os
|
5 |
import traceback
|
6 |
from io import BytesIO
|
@@ -15,22 +14,19 @@ import torch
|
|
15 |
from PIL import Image
|
16 |
|
17 |
from transformers import (
|
18 |
-
Qwen2VLForConditionalGeneration,
|
19 |
Qwen2_5_VLForConditionalGeneration,
|
20 |
-
AutoModelForImageTextToText,
|
21 |
AutoProcessor,
|
22 |
TextIteratorStreamer,
|
23 |
-
AutoModel,
|
24 |
-
AutoTokenizer,
|
25 |
)
|
26 |
-
|
27 |
-
from
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# --- Constants and Model Setup ---
|
30 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
31 |
-
# Note: The following line correctly falls back to CPU if CUDA is not available.
|
32 |
-
# Let the environment (e.g., Hugging Face Spaces) determine the device.
|
33 |
-
# This avoids conflicts with the CUDA environment setup by the platform.
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
@@ -44,24 +40,6 @@ if torch.cuda.is_available():
|
|
44 |
|
45 |
print("Using device:", device)
|
46 |
|
47 |
-
# --- Model Loading ---
|
48 |
-
|
49 |
-
# --- Prompts for Different Tasks ---
|
50 |
-
layout_prompt = """Please output the layout information from the image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
51 |
-
|
52 |
-
1. Bbox format: [x1, y1, x2, y2]
|
53 |
-
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
54 |
-
3. Text Extraction & Formatting Rules:
|
55 |
-
- For tables, provide the content in a structured JSON format.
|
56 |
-
- For all other elements, provide the plain text.
|
57 |
-
4. Constraints:
|
58 |
-
- The output must be the original text from the image.
|
59 |
-
- All layout elements must be sorted according to human reading order.
|
60 |
-
5. Final Output: The entire output must be a single JSON object wrapped in ```json ... ```.
|
61 |
-
"""
|
62 |
-
|
63 |
-
ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
|
64 |
-
|
65 |
# --- Model Loading ---
|
66 |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
|
67 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
@@ -96,78 +74,61 @@ model_i = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
96 |
MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
|
97 |
).to(device).eval()
|
98 |
|
99 |
-
# ---
|
100 |
-
|
101 |
-
"""
|
102 |
-
FIXED: Converts the structured JSON from Layout Analysis into formatted Markdown.
|
103 |
-
This version is robust against malformed JSON from the model.
|
104 |
-
"""
|
105 |
-
markdown_lines = []
|
106 |
-
|
107 |
-
# If the model wraps the list in a dictionary, find and extract the list.
|
108 |
-
if isinstance(layout_data, dict):
|
109 |
-
found_list = None
|
110 |
-
for value in layout_data.values():
|
111 |
-
if isinstance(value, list):
|
112 |
-
found_list = value
|
113 |
-
break
|
114 |
-
if found_list is not None:
|
115 |
-
layout_data = found_list
|
116 |
-
else:
|
117 |
-
return "### Error: Could not find a list of layout items in the JSON object."
|
118 |
-
|
119 |
-
if not isinstance(layout_data, list):
|
120 |
-
return f"### Error: Expected a list of layout items, but received type {type(layout_data).__name__}."
|
121 |
-
|
122 |
-
try:
|
123 |
-
# Filter out any non-dictionary items and sort by reading order.
|
124 |
-
valid_items = [item for item in layout_data if isinstance(item, dict)]
|
125 |
-
sorted_items = sorted(valid_items, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
126 |
-
|
127 |
-
for item in sorted_items:
|
128 |
-
category = item.get('category', 'Text') # Default to 'Text' if no category
|
129 |
-
text = item.get('text', '')
|
130 |
-
if not text:
|
131 |
-
continue
|
132 |
-
|
133 |
-
if category == 'Title':
|
134 |
-
markdown_lines.append(f"# {text}\n")
|
135 |
-
elif category == 'Section-header':
|
136 |
-
markdown_lines.append(f"## {text}\n")
|
137 |
-
elif category == 'Table':
|
138 |
-
if isinstance(text, dict) and 'header' in text and 'rows' in text:
|
139 |
-
header = '| ' + ' | '.join(map(str, text['header'])) + ' |'
|
140 |
-
separator = '| ' + ' | '.join(['---'] * len(text['header'])) + ' |'
|
141 |
-
rows = ['| ' + ' | '.join(map(str, row)) + ' |' for row in text['rows']]
|
142 |
-
markdown_lines.extend([header, separator] + rows)
|
143 |
-
markdown_lines.append("\n")
|
144 |
-
else: # Fallback for simple text or malformed tables
|
145 |
-
markdown_lines.append(f"{text}\n")
|
146 |
-
else:
|
147 |
-
markdown_lines.append(f"{text}\n")
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
print(f"Error converting to markdown: {e}")
|
151 |
-
traceback.print_exc()
|
152 |
-
return "### Error: An unexpected error occurred while converting JSON to Markdown."
|
153 |
-
|
154 |
-
return "\n".join(markdown_lines)
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# --- Core Application Logic ---
|
158 |
@spaces.GPU
|
159 |
-
def process_document_stream(model_name: str,
|
160 |
"""
|
161 |
-
Main generator function
|
162 |
"""
|
163 |
if image is None:
|
164 |
yield "Please upload an image.", "Please upload an image.", None
|
165 |
return
|
166 |
|
167 |
-
#
|
168 |
-
text_prompt = ocr_prompt if task_choice == "Content Extraction" else layout_prompt
|
169 |
-
|
170 |
-
# 2. Select model and processor
|
171 |
if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
|
172 |
elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
|
173 |
elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
|
@@ -177,7 +138,12 @@ def process_document_stream(model_name: str, task_choice: str, image: Image.Imag
|
|
177 |
yield "Invalid model selected.", "Invalid model selected.", None
|
178 |
return
|
179 |
|
180 |
-
#
|
|
|
|
|
|
|
|
|
|
|
181 |
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
|
182 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
183 |
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
@@ -187,41 +153,23 @@ def process_document_stream(model_name: str, task_choice: str, image: Image.Imag
|
|
187 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
188 |
thread.start()
|
189 |
|
190 |
-
#
|
191 |
buffer = ""
|
192 |
for new_text in streamer:
|
193 |
buffer += new_text
|
194 |
buffer = buffer.replace("<|im_end|>", "")
|
195 |
time.sleep(0.01)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
if task_choice == "Content Extraction":
|
200 |
-
# For OCR, the buffer is the final result.
|
201 |
-
yield buffer, buffer, None
|
202 |
-
else: # Layout Analysis
|
203 |
-
try:
|
204 |
-
json_match = re.search(r'```json\s*([\s\S]+?)\s*```', buffer)
|
205 |
-
if not json_match:
|
206 |
-
# If no JSON block is found, try to parse the whole buffer as a fallback.
|
207 |
-
try:
|
208 |
-
layout_data = json.loads(buffer)
|
209 |
-
markdown_content = layoutjson2md(layout_data)
|
210 |
-
yield buffer, markdown_content, layout_data
|
211 |
-
return
|
212 |
-
except json.JSONDecodeError:
|
213 |
-
raise ValueError("JSON object not found in the model's output.")
|
214 |
-
|
215 |
-
json_str = json_match.group(1)
|
216 |
-
layout_data = json.loads(json_str)
|
217 |
-
markdown_content = layoutjson2md(layout_data)
|
218 |
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
error_json = {"error": "ProcessingError", "details": str(e), "raw_output": buffer}
|
223 |
-
yield buffer, error_md, error_json
|
224 |
|
|
|
|
|
|
|
225 |
|
226 |
# --- Gradio UI Definition ---
|
227 |
def create_gradio_interface():
|
@@ -230,13 +178,15 @@ def create_gradio_interface():
|
|
230 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
231 |
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
232 |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
|
|
|
|
233 |
"""
|
234 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
235 |
gr.HTML("""
|
236 |
<div class="title" style="text-align: center">
|
237 |
<h1>Tiny VLMs Lab🧪</h1>
|
238 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
239 |
-
Advanced Vision-Language Model for Image Content and
|
240 |
</p>
|
241 |
</div>
|
242 |
""")
|
@@ -245,23 +195,39 @@ def create_gradio_interface():
|
|
245 |
# Left Column (Inputs)
|
246 |
with gr.Column(scale=1):
|
247 |
model_choice = gr.Dropdown(
|
248 |
-
choices=[
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
255 |
value="Nanonets-OCR-s"
|
256 |
)
|
257 |
-
task_choice = gr.Dropdown(
|
258 |
-
choices=["Content Extraction",
|
259 |
-
"Layout Analysis(.json)"],
|
260 |
-
label="Select Task", value="Content Extraction"
|
261 |
-
)
|
262 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
263 |
with gr.Accordion("Advanced Settings", open=False):
|
264 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
267 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
@@ -276,14 +242,13 @@ def create_gradio_interface():
|
|
276 |
examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
|
277 |
inputs=image_input,
|
278 |
label="Examples"
|
279 |
-
|
280 |
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
|
281 |
with gr.Tab("📰 README.md"):
|
282 |
with gr.Accordion("(Formatted Result)", open=True):
|
283 |
markdown_output = gr.Markdown(label="Formatted Markdown")
|
284 |
-
|
285 |
-
|
286 |
-
json_output = gr.JSON(label="Structured Layout Data (JSON)")
|
287 |
|
288 |
# Event Handlers
|
289 |
def clear_all_outputs():
|
@@ -291,20 +256,12 @@ def create_gradio_interface():
|
|
291 |
|
292 |
process_btn.click(
|
293 |
fn=process_document_stream,
|
294 |
-
inputs=[model_choice,
|
295 |
-
|
296 |
-
image_input,
|
297 |
-
max_new_tokens],
|
298 |
-
outputs=[raw_output_stream,
|
299 |
-
markdown_output,
|
300 |
-
json_output]
|
301 |
)
|
302 |
clear_btn.click(
|
303 |
-
clear_all_outputs,
|
304 |
-
outputs=[image_input,
|
305 |
-
raw_output_stream,
|
306 |
-
markdown_output,
|
307 |
-
json_output]
|
308 |
)
|
309 |
return demo
|
310 |
|
|
|
1 |
import spaces
|
2 |
import json
|
|
|
3 |
import os
|
4 |
import traceback
|
5 |
from io import BytesIO
|
|
|
14 |
from PIL import Image
|
15 |
|
16 |
from transformers import (
|
|
|
17 |
Qwen2_5_VLForConditionalGeneration,
|
|
|
18 |
AutoProcessor,
|
19 |
TextIteratorStreamer,
|
|
|
|
|
20 |
)
|
21 |
+
from reportlab.lib.pagesizes import A4
|
22 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
23 |
+
from reportlab.lib import colors
|
24 |
+
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
25 |
+
from reportlab.lib.units import inch
|
26 |
+
import uuid
|
27 |
|
28 |
# --- Constants and Model Setup ---
|
29 |
MAX_INPUT_TOKEN_LENGTH = 4096
|
|
|
|
|
|
|
30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
|
32 |
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
|
|
40 |
|
41 |
print("Using device:", device)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# --- Model Loading ---
|
44 |
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-080125"
|
45 |
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
|
|
74 |
MODEL_ID_I, trust_remote_code=True, torch_dtype=torch.float16
|
75 |
).to(device).eval()
|
76 |
|
77 |
+
# --- Prompts ---
|
78 |
+
ocr_prompt = "Perform precise OCR on the image. Extract all text content, maintaining the original structure, paragraphs, and tables as formatted markdown."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# --- PDF Generation Functions ---
|
81 |
+
def generate_pdf(media_path, plain_text, font_size, line_spacing, alignment, image_size):
|
82 |
+
"""Generates a PDF document."""
|
83 |
+
filename = f"output_{uuid.uuid4()}.pdf"
|
84 |
+
doc = SimpleDocTemplate(
|
85 |
+
filename,
|
86 |
+
pagesize=A4,
|
87 |
+
rightMargin=inch,
|
88 |
+
leftMargin=inch,
|
89 |
+
topMargin=inch,
|
90 |
+
bottomMargin=inch
|
91 |
+
)
|
92 |
+
styles = getSampleStyleSheet()
|
93 |
+
styles["Normal"].fontSize = int(font_size)
|
94 |
+
styles["Normal"].leading = int(font_size) * line_spacing
|
95 |
+
styles["Normal"].alignment = {
|
96 |
+
"Left": 0,
|
97 |
+
"Center": 1,
|
98 |
+
"Right": 2,
|
99 |
+
"Justified": 4
|
100 |
+
}[alignment]
|
101 |
+
|
102 |
+
story = []
|
103 |
+
|
104 |
+
# Add image with size adjustment
|
105 |
+
image_sizes = {
|
106 |
+
"Small": (200, 200),
|
107 |
+
"Medium": (400, 400),
|
108 |
+
"Large": (600, 600)
|
109 |
+
}
|
110 |
+
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
|
111 |
+
story.append(img)
|
112 |
+
story.append(Spacer(1, 12))
|
113 |
+
|
114 |
+
# Add plain text output
|
115 |
+
text = Paragraph(plain_text, styles["Normal"])
|
116 |
+
story.append(text)
|
117 |
+
|
118 |
+
doc.build(story)
|
119 |
+
return filename
|
120 |
|
121 |
# --- Core Application Logic ---
|
122 |
@spaces.GPU
|
123 |
+
def process_document_stream(model_name: str, image: Image.Image, max_new_tokens: int, font_size: str, line_spacing: float, alignment: str, image_size: str):
|
124 |
"""
|
125 |
+
Main generator function for OCR task, also generating PDF for preview.
|
126 |
"""
|
127 |
if image is None:
|
128 |
yield "Please upload an image.", "Please upload an image.", None
|
129 |
return
|
130 |
|
131 |
+
# Select model and processor
|
|
|
|
|
|
|
132 |
if model_name == "Camel-Doc-OCR-080125": processor, model = processor_m, model_m
|
133 |
elif model_name == "Megalodon-OCR-Sync-0713": processor, model = processor_t, model_t
|
134 |
elif model_name == "Nanonets-OCR-s": processor, model = processor_c, model_c
|
|
|
138 |
yield "Invalid model selected.", "Invalid model selected.", None
|
139 |
return
|
140 |
|
141 |
+
# Save image temporarily for PDF generation
|
142 |
+
temp_image_path = f"temp_{uuid.uuid4()}.png"
|
143 |
+
image.save(temp_image_path)
|
144 |
+
|
145 |
+
# Prepare model inputs and streamer
|
146 |
+
text_prompt = ocr_prompt
|
147 |
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text_prompt}]}]
|
148 |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
149 |
inputs = processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
|
|
|
153 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
154 |
thread.start()
|
155 |
|
156 |
+
# Stream raw output to the UI in real-time
|
157 |
buffer = ""
|
158 |
for new_text in streamer:
|
159 |
buffer += new_text
|
160 |
buffer = buffer.replace("<|im_end|>", "")
|
161 |
time.sleep(0.01)
|
162 |
+
# Generate PDF with current buffer
|
163 |
+
pdf_file = generate_pdf(temp_image_path, buffer, font_size, line_spacing, alignment, image_size)
|
164 |
+
yield buffer, buffer, pdf_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
# Final PDF with complete output
|
167 |
+
pdf_file = generate_pdf(temp_image_path, buffer, font_size, line_spacing, alignment, image_size)
|
168 |
+
yield buffer, buffer, pdf_file
|
|
|
|
|
169 |
|
170 |
+
# Clean up temporary image file
|
171 |
+
if os.path.exists(temp_image_path):
|
172 |
+
os.remove(temp_image_path)
|
173 |
|
174 |
# --- Gradio UI Definition ---
|
175 |
def create_gradio_interface():
|
|
|
178 |
.main-container { max-width: 1400px; margin: 0 auto; }
|
179 |
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
180 |
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
181 |
+
.download-btn { background-color: #35a6d6 !important; color: white !important; }
|
182 |
+
.download-btn:hover { background-color: #22bcff !important; }
|
183 |
"""
|
184 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css) as demo:
|
185 |
gr.HTML("""
|
186 |
<div class="title" style="text-align: center">
|
187 |
<h1>Tiny VLMs Lab🧪</h1>
|
188 |
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
|
189 |
+
Advanced Vision-Language Model for Image Content Extraction and PDF Generation
|
190 |
</p>
|
191 |
</div>
|
192 |
""")
|
|
|
195 |
# Left Column (Inputs)
|
196 |
with gr.Column(scale=1):
|
197 |
model_choice = gr.Dropdown(
|
198 |
+
choices=[
|
199 |
+
"Camel-Doc-OCR-080125",
|
200 |
+
"MonkeyOCR-Recognition",
|
201 |
+
"olmOCR-7B-0725",
|
202 |
+
"Nanonets-OCR-s",
|
203 |
+
"Megalodon-OCR-Sync-0713"
|
204 |
+
],
|
205 |
+
label="Select Model",
|
206 |
value="Nanonets-OCR-s"
|
207 |
)
|
|
|
|
|
|
|
|
|
|
|
208 |
image_input = gr.Image(label="Upload Image", type="pil", sources=['upload'])
|
209 |
with gr.Accordion("Advanced Settings", open=False):
|
210 |
max_new_tokens = gr.Slider(minimum=512, maximum=8192, value=4096, step=256, label="Max New Tokens")
|
211 |
+
font_size = gr.Dropdown(
|
212 |
+
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
|
213 |
+
value="16",
|
214 |
+
label="Font Size"
|
215 |
+
)
|
216 |
+
line_spacing = gr.Dropdown(
|
217 |
+
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
|
218 |
+
value=1.5,
|
219 |
+
label="Line Spacing"
|
220 |
+
)
|
221 |
+
alignment = gr.Dropdown(
|
222 |
+
choices=["Left", "Center", "Right", "Justified"],
|
223 |
+
value="Justified",
|
224 |
+
label="Text Alignment"
|
225 |
+
)
|
226 |
+
image_size = gr.Dropdown(
|
227 |
+
choices=["Small", "Medium", "Large"],
|
228 |
+
value="Medium",
|
229 |
+
label="Image Size"
|
230 |
+
)
|
231 |
|
232 |
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
233 |
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
|
|
242 |
examples=["examples/1.png", "examples/2.png", "examples/3.png", "examples/4.png", "examples/5.png"],
|
243 |
inputs=image_input,
|
244 |
label="Examples"
|
245 |
+
)
|
246 |
gr.Markdown("[Report-Bug💻](https://huggingface.co/spaces/prithivMLmods/OCR-Comparator/discussions)")
|
247 |
with gr.Tab("📰 README.md"):
|
248 |
with gr.Accordion("(Formatted Result)", open=True):
|
249 |
markdown_output = gr.Markdown(label="Formatted Markdown")
|
250 |
+
with gr.Tab("📋 PDF Preview"):
|
251 |
+
pdf_output = gr.File(label="Download PDF", interactive=True)
|
|
|
252 |
|
253 |
# Event Handlers
|
254 |
def clear_all_outputs():
|
|
|
256 |
|
257 |
process_btn.click(
|
258 |
fn=process_document_stream,
|
259 |
+
inputs=[model_choice, image_input, max_new_tokens, font_size, line_spacing, alignment, image_size],
|
260 |
+
outputs=[raw_output_stream, markdown_output, pdf_output]
|
|
|
|
|
|
|
|
|
|
|
261 |
)
|
262 |
clear_btn.click(
|
263 |
+
fn=clear_all_outputs,
|
264 |
+
outputs=[image_input, raw_output_stream, markdown_output, pdf_output]
|
|
|
|
|
|
|
265 |
)
|
266 |
return demo
|
267 |
|