Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,296 Bytes
c152910 9180057 4148e9b 9180057 4148e9b 60f59d6 c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b c152910 4148e9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re
import fitz # PyMuPDF
import gradio as gr
import requests
import torch
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration
# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28
# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.
"""
# Utility Functions
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 3136,
max_pixels: int = 11289600,
):
"""Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio."""
if max(height, width) / min(height, width) > 200:
raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = round_by_factor(height / beta, factor)
w_bar = round_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = round_by_factor(height * beta, factor)
w_bar = round_by_factor(width * beta, factor)
return h_bar, w_bar
def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
"""Fetch and process an image."""
if isinstance(image_input, str):
if image_input.startswith(("http://", "https://")):
response = requests.get(image_input)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_input).convert('RGB')
elif isinstance(image_input, Image.Image):
image = image_input.convert('RGB')
else:
raise ValueError(f"Invalid image input type: {type(image_input)}")
if min_pixels is not None or max_pixels is not None:
min_pixels = min_pixels or MIN_PIXELS
max_pixels = max_pixels or MAX_PIXELS
height, width = smart_resize(
image.height,
image.width,
factor=IMAGE_FACTOR,
min_pixels=min_pixels,
max_pixels=max_pixels
)
image = image.resize((width, height), Image.LANCZOS)
return image
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
"""Load images from PDF file."""
images = []
try:
pdf_document = fitz.open(pdf_path)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
mat = fitz.Matrix(2.0, 2.0) # Increase resolution
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("ppm")
image = Image.open(BytesIO(img_data)).convert('RGB')
images.append(image)
pdf_document.close()
except Exception as e:
print(f"Error loading PDF: {e}")
return []
return images
def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
"""Draw layout bounding boxes on image."""
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
colors = {
'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD',
'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8',
'Text': '#74B9FF', 'Title': '#E17055'
}
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default()
for item in layout_data:
if 'bbox' in item and 'category' in item:
bbox = item['bbox']
category = item['category']
color = colors.get(category, '#000000')
draw.rectangle(bbox, outline=color, width=2)
label = category
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2)
draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
except Exception as e:
print(f"Error drawing layout: {e}")
return img_copy
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
"""Convert layout JSON to markdown format."""
import base64
markdown_lines = []
try:
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
for item in sorted_items:
category = item.get('category', '')
text = item.get(text_key, '')
bbox = item.get('bbox', [])
if category == 'Picture' and bbox and len(bbox) == 4:
try:
x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))]
if x2 > x1 and y2 > y1:
cropped_img = image.crop((x1, y1, x2, y2))
buffer = BytesIO()
cropped_img.save(buffer, format='PNG')
img_data = base64.b64encode(buffer.getvalue()).decode()
markdown_lines.append(f"\n")
else:
markdown_lines.append("\n")
except Exception as e:
print(f"Error processing image region: {e}")
markdown_lines.append("\n")
elif not text:
continue
elif category == 'Title':
markdown_lines.append(f"# {text}\n")
elif category == 'Section-header':
markdown_lines.append(f"## {text}\n")
elif category == 'Text':
markdown_lines.append(f"{text}\n")
elif category == 'List-item':
markdown_lines.append(f"- {text}\n")
elif category == 'Table':
markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n")
elif category == 'Formula':
markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n")
elif category == 'Caption':
markdown_lines.append(f"*{text}*\n")
elif category == 'Footnote':
markdown_lines.append(f"^{text}^\n")
elif category in ['Page-header', 'Page-footer']:
continue
else:
markdown_lines.append(f"{text}\n")
markdown_lines.append("")
except Exception as e:
print(f"Error converting to markdown: {e}")
return str(layout_data)
return "\n".join(markdown_lines)
# Load Models
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load dot.ocr
model_id = "rednote-hilab/dots.ocr"
model_path = "./models/dots-ocr-local"
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
model = AutoModelForCausalLM.from_pretrained(
model_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Model Dictionary
model_dict = {
"dot.ocr": {"model": model, "processor": processor, "process_layout": True},
"Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False},
"Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False},
}
# Global State
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
@spaces.GPU()
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
"""Run inference on an image with the given prompt using the specified model and processor."""
try:
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
return output_text[0] if output_text else ""
except Exception as e:
print(f"Error during inference: {e}")
traceback.print_exc()
return f"Error during inference: {str(e)}"
def process_image(
image: Image.Image,
model,
processor,
process_layout: bool,
min_pixels: Optional[int] = None,
max_pixels: Optional[int] = None
) -> Dict[str, Any]:
"""Process a single image with the specified model and processor."""
try:
if min_pixels is not None or max_pixels is not None:
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
raw_output = inference(model, processor, image, prompt)
result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output}
if process_layout:
try:
layout_data = json.loads(raw_output)
result['layout_result'] = layout_data
result['processed_image'] = draw_layout_on_image(image, layout_data)
result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text')
except json.JSONDecodeError:
print("Failed to parse JSON output, using raw output")
except Exception as e:
print(f"Error processing layout: {e}")
return result
except Exception as e:
print(f"Error processing image: {e}")
traceback.print_exc()
return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)}
def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
"""Load file for preview (supports PDF and images)."""
global pdf_cache
if not file_path or not os.path.exists(file_path):
return None, "No file selected"
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.pdf':
images = load_images_from_pdf(file_path)
if not images:
return None, "Failed to load PDF"
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []})
return images[0], f"Page 1 / {len(images)}"
elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
image = Image.open(file_path).convert('RGB')
pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []})
return image, "Page 1 / 1"
else:
return None, f"Unsupported file format: {file_ext}"
except Exception as e:
print(f"Error loading file: {e}")
return None, f"Error loading file: {str(e)}"
def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
"""Navigate through PDF pages and update outputs."""
global pdf_cache
if not pdf_cache["images"]:
return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
index = pdf_cache["current_page"]
current_image_preview = pdf_cache["images"][index]
page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'
markdown_content, processed_img, layout_json = "Page not processed yet", None, None
if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]:
result = pdf_cache["results"][index]
markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
processed_img = result.get('processed_image')
layout_json = result.get('layout_result')
return current_image_preview, page_info_html, markdown_content, processed_img, layout_json
def create_gradio_interface():
"""Create the Gradio interface."""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button {
border: none !important;
color: white !important;
font-weight: bold !important;
background-color: blue !important;}
.process-button:hover {
background-color: darkblue !important;
transform: translateY(-2px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
.model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
.status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo:
gr.HTML("""
<div class="title" style="text-align: center">
<h1>Dot<span style="color: red;">●</span>OCR Comparator</h1>
<p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
Advanced vision-language model for image/PDF to markdown document processing
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"],
label="Select Model",
value="dot.ocr"
)
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
with gr.Row():
examples = gr.Examples(
examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
inputs=file_input,
label="Example Documents"
)
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
with gr.Row():
prev_page_btn = gr.Button("◀ Previous", size="md")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next ▶", size="md")
with gr.Accordion("Advanced Settings", open=False):
max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("🖼️ Processed Image"):
processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
with gr.Tab("📝 Extracted Content"):
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
with gr.Tab("📋 Layout JSON"):
json_output = gr.JSON(label="Layout Analysis Results", value=None)
def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
"""Process the uploaded document with the selected model."""
global pdf_cache
if not file_path:
return None, "Please upload a file first.", None
if model_choice not in model_dict:
return None, "Invalid model selected", None
selected_model = model_dict[model_choice]["model"]
selected_processor = model_dict[model_choice]["processor"]
process_layout = model_dict[model_choice]["process_layout"]
image, page_info = load_file_for_preview(file_path)
if image is None:
return None, page_info, None
if pdf_cache["file_type"] == "pdf":
all_results, all_markdown = [], []
for i, img in enumerate(pdf_cache["images"]):
result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
all_results.append(result)
if result.get('markdown_content'):
all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
pdf_cache["results"] = all_results
pdf_cache["is_parsed"] = True
first_result = all_results[0]
return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result']
else:
result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
pdf_cache["results"] = [result]
pdf_cache["is_parsed"] = True
return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result']
def handle_file_upload(file_path):
image, page_info = load_file_for_preview(file_path)
return image, page_info
def clear_all():
global pdf_cache
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None
file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output])
clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output])
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.queue(max_size=50).launch(share=False, debug=True, show_error=True) |