File size: 22,296 Bytes
c152910
 
 
 
 
 
 
 
 
 
 
 
9180057
 
4148e9b
9180057
4148e9b
60f59d6
c152910
 
 
 
 
4148e9b
c152910
 
 
4148e9b
 
 
c152910
4148e9b
 
 
 
c152910
4148e9b
 
 
c152910
4148e9b
 
c152910
4148e9b
c152910
4148e9b
c152910
 
4148e9b
 
 
 
 
 
 
 
c152910
 
 
 
4148e9b
c152910
 
 
 
 
 
 
 
 
 
 
4148e9b
c152910
 
 
 
 
 
 
 
 
 
4148e9b
 
c152910
 
4148e9b
 
 
 
 
 
 
c152910
4148e9b
c152910
 
 
4148e9b
c152910
 
 
 
 
4148e9b
c152910
 
 
 
 
 
 
 
 
 
 
4148e9b
c152910
 
4148e9b
c152910
4148e9b
 
 
 
c152910
4148e9b
c152910
4148e9b
c152910
 
 
 
 
4148e9b
c152910
4148e9b
c152910
 
4148e9b
 
 
c152910
 
 
 
4148e9b
c152910
 
 
4148e9b
c152910
4148e9b
c152910
 
 
 
 
 
 
4148e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
 
 
 
 
 
 
 
 
 
4148e9b
c152910
4148e9b
c152910
 
 
 
 
 
 
 
 
 
 
 
4148e9b
c152910
 
4148e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
4148e9b
c152910
 
 
4148e9b
c152910
 
 
 
 
 
4148e9b
c152910
 
 
4148e9b
c152910
 
 
 
 
 
 
 
4148e9b
c152910
 
 
4148e9b
 
c152910
 
 
4148e9b
 
 
c152910
4148e9b
 
 
 
 
c152910
 
4148e9b
c152910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4148e9b
 
c152910
 
4148e9b
c152910
 
 
 
 
4148e9b
c152910
 
4148e9b
 
 
 
c152910
4148e9b
 
 
 
 
 
 
c152910
 
4148e9b
c152910
4148e9b
c152910
 
 
 
4148e9b
 
 
c152910
 
4148e9b
c152910
4148e9b
c152910
4148e9b
c152910
4148e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c152910
 
 
4148e9b
c152910
 
 
 
4148e9b
c152910
 
 
4148e9b
 
 
c152910
 
 
 
4148e9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import spaces
import json
import math
import os
import traceback
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple
import re

import fitz  # PyMuPDF
import gradio as gr
import requests
import torch
from huggingface_hub import snapshot_download
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info
from transformers import AutoModelForCausalLM, AutoProcessor, Qwen2_5_VLForConditionalGeneration

# Constants
MIN_PIXELS = 3136
MAX_PIXELS = 11289600
IMAGE_FACTOR = 28

# Prompts
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.

1. Bbox format: [x1, y1, x2, y2]

2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].

3. Text Extraction & Formatting Rules:
    - Picture: For the 'Picture' category, the text field should be omitted.
    - Formula: Format its text as LaTeX.
    - Table: Format its text as HTML.
    - All Others (Text, Title, etc.): Format their text as Markdown.

4. Constraints:
    - The output text must be the original text from the image, with no translation.
    - All layout elements must be sorted according to human reading order.

5. Final Output: The entire output must be a single JSON object.
"""

# Utility Functions
def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor

def smart_resize(
    height: int,
    width: int,
    factor: int = 28,
    min_pixels: int = 3136,
    max_pixels: int = 11289600,
):
    """Rescales the image so that dimensions are divisible by 'factor', within pixel range, maintaining aspect ratio."""
    if max(height, width) / min(height, width) > 200:
        raise ValueError(f"Aspect ratio must be < 200, got {max(height, width) / min(height, width)}")
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))

    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = round_by_factor(height / beta, factor)
        w_bar = round_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = round_by_factor(height * beta, factor)
        w_bar = round_by_factor(width * beta, factor)
    return h_bar, w_bar

def fetch_image(image_input, min_pixels: int = None, max_pixels: int = None):
    """Fetch and process an image."""
    if isinstance(image_input, str):
        if image_input.startswith(("http://", "https://")):
            response = requests.get(image_input)
            image = Image.open(BytesIO(response.content)).convert('RGB')
        else:
            image = Image.open(image_input).convert('RGB')
    elif isinstance(image_input, Image.Image):
        image = image_input.convert('RGB')
    else:
        raise ValueError(f"Invalid image input type: {type(image_input)}")
    
    if min_pixels is not None or max_pixels is not None:
        min_pixels = min_pixels or MIN_PIXELS
        max_pixels = max_pixels or MAX_PIXELS
        height, width = smart_resize(
            image.height,
            image.width,
            factor=IMAGE_FACTOR,
            min_pixels=min_pixels,
            max_pixels=max_pixels
        )
        image = image.resize((width, height), Image.LANCZOS)
    
    return image

def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
    """Load images from PDF file."""
    images = []
    try:
        pdf_document = fitz.open(pdf_path)
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            mat = fitz.Matrix(2.0, 2.0)  # Increase resolution
            pix = page.get_pixmap(matrix=mat)
            img_data = pix.tobytes("ppm")
            image = Image.open(BytesIO(img_data)).convert('RGB')
            images.append(image)
        pdf_document.close()
    except Exception as e:
        print(f"Error loading PDF: {e}")
        return []
    return images

def draw_layout_on_image(image: Image.Image, layout_data: List[Dict]) -> Image.Image:
    """Draw layout bounding boxes on image."""
    img_copy = image.copy()
    draw = ImageDraw.Draw(img_copy)
    
    colors = {
        'Caption': '#FF6B6B', 'Footnote': '#4ECDC4', 'Formula': '#45B7D1',
        'List-item': '#96CEB4', 'Page-footer': '#FFEAA7', 'Page-header': '#DDA0DD',
        'Picture': '#FFD93D', 'Section-header': '#6C5CE7', 'Table': '#FD79A8',
        'Text': '#74B9FF', 'Title': '#E17055'
    }
    
    try:
        font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", 12) or ImageFont.load_default()
        for item in layout_data:
            if 'bbox' in item and 'category' in item:
                bbox = item['bbox']
                category = item['category']
                color = colors.get(category, '#000000')
                
                draw.rectangle(bbox, outline=color, width=2)
                
                label = category
                label_bbox = draw.textbbox((0, 0), label, font=font)
                label_width, label_height = label_bbox[2] - label_bbox[0], label_bbox[3] - label_bbox[1]
                
                label_x, label_y = bbox[0], max(0, bbox[1] - label_height - 2)
                draw.rectangle([label_x, label_y, label_x + label_width + 4, label_y + label_height + 2], fill=color)
                draw.text((label_x + 2, label_y + 1), label, fill='white', font=font)
    except Exception as e:
        print(f"Error drawing layout: {e}")
    
    return img_copy

def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key: str = 'text') -> str:
    """Convert layout JSON to markdown format."""
    import base64
    
    markdown_lines = []
    try:
        sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
        for item in sorted_items:
            category = item.get('category', '')
            text = item.get(text_key, '')
            bbox = item.get('bbox', [])
            
            if category == 'Picture' and bbox and len(bbox) == 4:
                try:
                    x1, y1, x2, y2 = [max(0, int(x1)), max(0, int(y1)), min(image.width, int(x2)), min(image.height, int(y2))]
                    if x2 > x1 and y2 > y1:
                        cropped_img = image.crop((x1, y1, x2, y2))
                        buffer = BytesIO()
                        cropped_img.save(buffer, format='PNG')
                        img_data = base64.b64encode(buffer.getvalue()).decode()
                        markdown_lines.append(f"![Image](data:image/png;base64,{img_data})\n")
                    else:
                        markdown_lines.append("![Image](Image region detected)\n")
                except Exception as e:
                    print(f"Error processing image region: {e}")
                    markdown_lines.append("![Image](Image detected)\n")
            elif not text:
                continue
            elif category == 'Title':
                markdown_lines.append(f"# {text}\n")
            elif category == 'Section-header':
                markdown_lines.append(f"## {text}\n")
            elif category == 'Text':
                markdown_lines.append(f"{text}\n")
            elif category == 'List-item':
                markdown_lines.append(f"- {text}\n")
            elif category == 'Table':
                markdown_lines.append(f"{text}\n" if text.strip().startswith('<') else f"**Table:** {text}\n")
            elif category == 'Formula':
                markdown_lines.append(f"$$\n{text}\n$$\n" if text.strip().startswith('$') or '\\' in text else f"**Formula:** {text}\n")
            elif category == 'Caption':
                markdown_lines.append(f"*{text}*\n")
            elif category == 'Footnote':
                markdown_lines.append(f"^{text}^\n")
            elif category in ['Page-header', 'Page-footer']:
                continue
            else:
                markdown_lines.append(f"{text}\n")
            markdown_lines.append("")
    except Exception as e:
        print(f"Error converting to markdown: {e}")
        return str(layout_data)
    
    return "\n".join(markdown_lines)

# Load Models
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load dot.ocr
model_id = "rednote-hilab/dots.ocr"
model_path = "./models/dots-ocr-local"
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Model Dictionary
model_dict = {
    "dot.ocr": {"model": model, "processor": processor, "process_layout": True},
    "Camel-Doc-OCR-062825": {"model": model_m, "processor": processor_m, "process_layout": False},
    "Megalodon-OCR-Sync-0713": {"model": model_t, "processor": processor_t, "process_layout": False},
}

# Global State
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}

@spaces.GPU()
def inference(model, processor, image: Image.Image, prompt: str, max_new_tokens: int = 24000) -> str:
    """Run inference on an image with the given prompt using the specified model and processor."""
    try:
        messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
        
        with torch.no_grad():
            generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
        generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
        output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        return output_text[0] if output_text else ""
    except Exception as e:
        print(f"Error during inference: {e}")
        traceback.print_exc()
        return f"Error during inference: {str(e)}"

def process_image(
    image: Image.Image,
    model,
    processor,
    process_layout: bool,
    min_pixels: Optional[int] = None,
    max_pixels: Optional[int] = None
) -> Dict[str, Any]:
    """Process a single image with the specified model and processor."""
    try:
        if min_pixels is not None or max_pixels is not None:
            image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
        
        raw_output = inference(model, processor, image, prompt)
        result = {'original_image': image, 'raw_output': raw_output, 'processed_image': image, 'layout_result': None, 'markdown_content': raw_output}
        
        if process_layout:
            try:
                layout_data = json.loads(raw_output)
                result['layout_result'] = layout_data
                result['processed_image'] = draw_layout_on_image(image, layout_data)
                result['markdown_content'] = layoutjson2md(image, layout_data, text_key='text')
            except json.JSONDecodeError:
                print("Failed to parse JSON output, using raw output")
            except Exception as e:
                print(f"Error processing layout: {e}")
        
        return result
    except Exception as e:
        print(f"Error processing image: {e}")
        traceback.print_exc()
        return {'original_image': image, 'raw_output': str(e), 'processed_image': image, 'layout_result': None, 'markdown_content': str(e)}

def load_file_for_preview(file_path: str) -> Tuple[Optional[Image.Image], str]:
    """Load file for preview (supports PDF and images)."""
    global pdf_cache
    if not file_path or not os.path.exists(file_path):
        return None, "No file selected"
    
    file_ext = os.path.splitext(file_path)[1].lower()
    try:
        if file_ext == '.pdf':
            images = load_images_from_pdf(file_path)
            if not images:
                return None, "Failed to load PDF"
            pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images), "file_type": "pdf", "is_parsed": False, "results": []})
            return images[0], f"Page 1 / {len(images)}"
        elif file_ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']:
            image = Image.open(file_path).convert('RGB')
            pdf_cache.update({"images": [image], "current_page": 0, "total_pages": 1, "file_type": "image", "is_parsed": False, "results": []})
            return image, "Page 1 / 1"
        else:
            return None, f"Unsupported file format: {file_ext}"
    except Exception as e:
        print(f"Error loading file: {e}")
        return None, f"Error loading file: {str(e)}"

def turn_page(direction: str) -> Tuple[Optional[Image.Image], str, Any, Optional[Image.Image], Optional[Dict]]:
    """Navigate through PDF pages and update outputs."""
    global pdf_cache
    if not pdf_cache["images"]:
        return None, '<div class="page-info">No file loaded</div>', "No results yet", None, None

    pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1) if direction == "prev" else min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
    index = pdf_cache["current_page"]
    current_image_preview = pdf_cache["images"][index]
    page_info_html = f'<div class="page-info">Page {index + 1} / {pdf_cache["total_pages"]}</div>'

    markdown_content, processed_img, layout_json = "Page not processed yet", None, None
    if pdf_cache["is_parsed"] and index < len(pdf_cache["results"]) and pdf_cache["results"][index]:
        result = pdf_cache["results"][index]
        markdown_content = result.get('markdown_content') or result.get('raw_output', 'No content available')
        processed_img = result.get('processed_image')
        layout_json = result.get('layout_result')

    return current_image_preview, page_info_html, markdown_content, processed_img, layout_json

def create_gradio_interface():
    """Create the Gradio interface."""
    css = """
    .main-container { max-width: 1400px; margin: 0 auto; }
    .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
    .process-button { 
        border: none !important; 
        color: white !important; 
        font-weight: bold !important; 
        background-color: blue !important;} 
    .process-button:hover { 
        background-color: darkblue !important;
        transform: translateY(-2px) !important; 
        box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
    .info-box { border: 1px solid #dee2e6; border-radius: 8px; padding: 15px; margin: 10px 0; }
    .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
    .model-status { padding: 10px; border-radius: 8px; margin: 10px 0; text-align: center; font-weight: bold; }
    .status-ready { background: #d1edff; color: #0c5460; border: 1px solid #b8daff; }
    """

    with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Dot●OCR Comparator") as demo:
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>Dot<span style="color: red;">●</span>OCR Comparator</h1>
            <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
                Advanced vision-language model for image/PDF to markdown document processing
            </p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                model_choice = gr.Radio(
                    choices=["dot.ocr", "Camel-Doc-OCR-062825", "Megalodon-OCR-Sync-0713"],
                    label="Select Model",
                    value="dot.ocr"
                )
                file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
                with gr.Row():
                    examples = gr.Examples(
                        examples=["examples/sample_image1.png", "examples/sample_image2.png", "examples/sample_pdf.pdf"],
                        inputs=file_input,
                        label="Example Documents"
                    )
                image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
                with gr.Row():
                    prev_page_btn = gr.Button("◀ Previous", size="md")
                    page_info = gr.HTML('<div class="page-info">No file loaded</div>')
                    next_page_btn = gr.Button("Next ▶", size="md")
                with gr.Accordion("Advanced Settings", open=False):
                    max_new_tokens = gr.Slider(minimum=1000, maximum=32000, value=24000, step=1000, label="Max New Tokens")
                    min_pixels = gr.Number(value=MIN_PIXELS, label="Min Pixels")
                    max_pixels = gr.Number(value=MAX_PIXELS, label="Max Pixels")
                process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
                clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
            
            with gr.Column(scale=2):
                with gr.Tabs():
                    with gr.Tab("🖼️ Processed Image"):
                        processed_image = gr.Image(label="Image with Layout Detection", type="pil", interactive=False, height=500)
                    with gr.Tab("📝 Extracted Content"):
                        markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
                    with gr.Tab("📋 Layout JSON"):
                        json_output = gr.JSON(label="Layout Analysis Results", value=None)

        def process_document(file_path, model_choice, max_tokens, min_pix, max_pix):
            """Process the uploaded document with the selected model."""
            global pdf_cache
            if not file_path:
                return None, "Please upload a file first.", None
            if model_choice not in model_dict:
                return None, "Invalid model selected", None
            
            selected_model = model_dict[model_choice]["model"]
            selected_processor = model_dict[model_choice]["processor"]
            process_layout = model_dict[model_choice]["process_layout"]
            
            image, page_info = load_file_for_preview(file_path)
            if image is None:
                return None, page_info, None
            
            if pdf_cache["file_type"] == "pdf":
                all_results, all_markdown = [], []
                for i, img in enumerate(pdf_cache["images"]):
                    result = process_image(img, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
                    all_results.append(result)
                    if result.get('markdown_content'):
                        all_markdown.append(f"## Page {i+1}\n\n{result['markdown_content']}")
                pdf_cache["results"] = all_results
                pdf_cache["is_parsed"] = True
                first_result = all_results[0]
                return first_result['processed_image'], "\n\n---\n\n".join(all_markdown), first_result['layout_result']
            else:
                result = process_image(image, selected_model, selected_processor, process_layout, int(min_pix) if min_pix else None, int(max_pix) if max_pix else None)
                pdf_cache["results"] = [result]
                pdf_cache["is_parsed"] = True
                return result['processed_image'], result['markdown_content'] or "No content extracted", result['layout_result']

        def handle_file_upload(file_path):
            image, page_info = load_file_for_preview(file_path)
            return image, page_info

        def clear_all():
            global pdf_cache
            pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
            return None, None, '<div class="page-info">No file loaded</div>', None, "Click 'Process Document' to see extracted content...", None

        file_input.change(handle_file_upload, inputs=[file_input], outputs=[image_preview, page_info])
        prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
        next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output, processed_image, json_output])
        process_btn.click(process_document, inputs=[file_input, model_choice, max_new_tokens, min_pixels, max_pixels], outputs=[processed_image, markdown_output, json_output])
        clear_btn.click(clear_all, outputs=[file_input, image_preview, page_info, processed_image, markdown_output, json_output])
    
    return demo

if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue(max_size=50).launch(share=False, debug=True, show_error=True)