File size: 7,234 Bytes
0c1b8f7
fca22b9
b06a87f
0c1b8f7
fca22b9
0c1b8f7
32d8e74
b06a87f
fca22b9
f74b154
fca22b9
 
 
 
 
 
b06a87f
fca22b9
 
 
 
 
b06a87f
fca22b9
 
 
 
 
 
 
 
 
 
 
 
 
 
f74b154
fca22b9
 
 
 
 
 
 
 
d6b5ac6
 
d7f29b6
 
 
d6b5ac6
 
 
d7f29b6
47473ae
f74b154
fca22b9
 
 
 
 
 
0886910
fca22b9
d7f29b6
7f471f2
b06a87f
 
 
 
48a6837
ab6b5e5
fca22b9
 
 
 
 
 
 
b06a87f
f74b154
 
 
 
 
fca22b9
a592e13
fca22b9
 
f74b154
 
 
 
 
 
fca22b9
f74b154
d6b5ac6
94d1453
 
f74b154
d6b5ac6
 
a592e13
f74b154
 
d6b5ac6
 
a592e13
f74b154
a592e13
f74b154
a592e13
 
fca22b9
 
 
 
a592e13
fca22b9
 
 
f74b154
fca22b9
 
 
 
 
 
 
 
 
 
 
 
ea9ba29
a592e13
f74b154
a592e13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f74b154
 
a592e13
fca22b9
a592e13
 
f74b154
 
484539f
f74b154
fca22b9
f74b154
484539f
ea9ba29
fca22b9
0ba4242
fca22b9
ea9ba29
 
 
 
 
0ba4242
 
d6b5ac6
4bcff80
 
c1f7ac1
b06a87f
d6b5ac6
0ba4242
fca22b9
 
 
b06a87f
0ba4242
fca22b9
 
 
0ba4242
47473ae
0c1b8f7
2aadb64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
import time

DESCRIPTION = """
# QwQ Edge 💬
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
    "en-US-AriaNeural",   # @tts3
    "en-US-DavisNeural",  # @tts4
    "en-US-JaneNeural",   # @tts5
    "en-US-JasonNeural",  # @tts6
]

# Load the multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot response and handles TTS requests with multimodal input support.
    If the query starts with a TTS command (e.g. '@tts1'), the chat history is cleared
    to avoid non-text responses (like Audio) interfering with template rendering.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # Check if input includes image(s)
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    # Check if the message is for TTS
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 7))
    voice_index = next((i for i in range(1, 7) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        # Clear conversation history to avoid issues with non-text outputs.
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = [*chat_history, {"role": "user", "content": text}]

    # If there are images, process multimodal input
    if images:
        messages = [
            {"role": "user", "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]}
        ]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")

        # Handle generation for multimodal input using model_m
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield "Thinking..."
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer

    else:
        # Process text-only input using model
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)

        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            {"input_ids": input_ids},
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            repetition_penalty=repetition_penalty,
        )
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)

        # Yield text response first.
        yield final_response

        # If TTS was requested, yield audio output separately.
        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
        ["Write a Python function to check if a number is prime."],
        ["@tts2 What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)