Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,733 Bytes
0c1b8f7 a01646a 848917c e96dd4e 3b1b420 848917c a01646a 40dd3a7 e96dd4e 3b1b420 848917c b3eb6e0 3b1b420 2b1f8da 848917c c9a1d71 848917c 3b1b420 848917c 3b1b420 848917c 6c00396 5380a8e c112228 3b1b420 848917c cbd58ed 848917c c9a1d71 6c00396 c9a1d71 4a4da06 e96dd4e 8781ebc 848917c 6c00396 848917c c9a1d71 848917c 6c00396 c9a1d71 848917c c9a1d71 848917c 47473ae 0c1b8f7 e96dd4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import numpy as np
import random
import time
import spaces
from diffusers import DiffusionPipeline
import torch
from PIL import Image
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from typing import Iterable
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.gray,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
seafoam = Seafoam()
# Device and model setup
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
trigger_word = "Turbo Realism"
pipe.fuse_lora(lora_scale=1.0)
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Define styles
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
STYLE_NAMES = [s["name"] for s in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
# Define grid layouts
grid_sizes = {
"2x1": (2, 1),
"1x2": (1, 2),
"2x2": (2, 2),
"2x3": (2, 3),
"3x2": (3, 2),
"1x1": (1, 1),
}
@spaces.GPU
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=7.5,
num_inference_steps=10,
style="Style Zero",
grid_size="1x1",
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
selected_style = next(s for s in style_list if s["name"] == style)
styled_prompt = selected_style["prompt"].format(prompt=prompt)
styled_negative = selected_style["negative_prompt"] or negative_prompt
grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
num_images = grid_x * grid_y
output = pipe(
prompt=styled_prompt,
negative_prompt=styled_negative,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
num_images_per_prompt=num_images,
)
grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
for i, img in enumerate(output.images[:num_images]):
x = (i % grid_x) * width
y = (i // grid_x) * height
grid_img.paste(img, (x, y))
return grid_img, seed
examples = [
"A tiny, cute astronaut emerging from a cracked eggshell on the surface of the moon, surrounded by cosmic dust and distant planets in the starry sky. The scene is illuminated by soft lunar light, showcasing the texture of the moon's surface. Shot in ultra-detailed 4K resolution, with a sci-fi fantasy atmosphere and planetary background",
"A cute, fluffy cat standing upright on its hind legs, holding a hand-drawn sign that says 'Hello World' in bold, playful letters. The background is softly blurred, emphasizing the cat’s detailed fur texture and the colorful sign. Captured in portrait aspect ratio --ar 85:128, using --v 6.0 and --style raw for a semi-realistic, endearing look",
"A photorealistic image of a cold coffee beverage in a glass cup, condensation on the surface, sitting on a wooden café table with shallow depth of field. The background features beautiful bokeh lighting, creating a cozy, blurred café ambiance. Shot in portrait mode --ar 85:128, 4K ultra-resolution, using --style raw5 for authentic textures, --v 6.0.",
"An anime-style food illustration of a golden-brown wiener schnitzel, perfectly fried and crispy, served on a white ceramic plate. Accompanied by fresh parsley garnish and thin lemon slices, with artistic shading and stylized highlights. Captured in an anime illustration format --style raw5, high color saturation, food-themed aesthetic."
]
css = '''
.gradio-container {
max-width: 100%;
margin: 0 auto;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''
with gr.Blocks(theme=seafoam, css=css) as demo:
gr.Markdown("## T2I SD3.5")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(show_label=False)
grid_size_selection = gr.Dropdown(
choices=list(grid_sizes.keys()),
value="1x1",
label="Grid Size"
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
)
seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")
with gr.Row():
guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=0.0, label="Guidance scale")
num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")
style_selection = gr.Radio(
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Column(scale=1):
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
fn=infer,
cache_examples=False,
label="Prompt Examples"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps,
style_selection, grid_size_selection
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(ssr_mode=False) |