Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,618 Bytes
0c1b8f7 b06a87f 0c1b8f7 fca22b9 0c1b8f7 32d8e74 b06a87f fca22b9 f74b154 fca22b9 b06a87f fca22b9 b06a87f fca22b9 83a0174 fca22b9 d6b5ac6 d7f29b6 d6b5ac6 d7f29b6 47473ae 83a0174 fca22b9 0886910 fca22b9 d7f29b6 7f471f2 b06a87f 83a0174 48a6837 ab6b5e5 fca22b9 b06a87f f74b154 83a0174 f74b154 fca22b9 a592e13 fca22b9 83a0174 f74b154 fca22b9 83a0174 d6b5ac6 94d1453 83a0174 d6b5ac6 a592e13 83a0174 f74b154 d6b5ac6 a592e13 83a0174 a592e13 83a0174 a592e13 83a0174 fca22b9 83a0174 fca22b9 a592e13 83a0174 a592e13 83a0174 a592e13 f74b154 a592e13 fca22b9 a592e13 83a0174 f74b154 484539f fca22b9 f74b154 484539f ea9ba29 fca22b9 0ba4242 fca22b9 ea9ba29 0ba4242 d6b5ac6 4bcff80 c1f7ac1 b06a87f d6b5ac6 0ba4242 fca22b9 b06a87f 0ba4242 fca22b9 0ba4242 47473ae 0c1b8f7 2aadb64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
import time
DESCRIPTION = """
# QwQ Edge 💬
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
"en-US-AriaNeural", # @tts3
"en-US-DavisNeural", # @tts4
"en-US-JaneNeural", # @tts5
"en-US-JasonNeural", # @tts6
]
# Multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any entries whose content is not a string.
This avoids non-text objects (like tuples or Audio) from being concatenated.
"""
cleaned = []
for msg in chat_history:
# Only keep dict messages that have a string 'content'
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates a chatbot response and handles TTS requests with multimodal input support.
If the user’s query begins with an @tts command, previous chat history is ignored
(clearing any non-text outputs). Otherwise, the chat history is cleaned to include only text.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# Determine if images are provided
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
# Check for TTS prefix
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 7))
voice_index = next((i for i in range(1, 7) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
# Clear any previous chat history when using TTS to avoid type errors
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
# Clean the chat history to include only messages with string content
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
# Multimodal branch if images are provided
if images:
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
# Text-only branch using the text model
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
# Yield text response first
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts1 Who is Nikola Tesla, and why did he die?"],
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["Write a Python function to check if a number is prime."],
["@tts2 What causes rainbows to form?"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |