File size: 10,631 Bytes
0c1b8f7
b06a87f
0c1b8f7
fca22b9
0c1b8f7
32d8e74
b06a87f
fca22b9
40dd3a7
fca22b9
 
 
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d2094
fca22b9
 
 
 
 
 
 
 
d6b5ac6
40dd3a7
 
 
 
 
34d2094
fca22b9
 
 
 
 
 
0886910
fca22b9
d7f29b6
7f471f2
b06a87f
 
 
 
83a0174
40dd3a7
 
 
 
 
 
 
 
 
83a0174
48a6837
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
fca22b9
a592e13
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b5ac6
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9ba29
fca22b9
0ba4242
fca22b9
40dd3a7
ea9ba29
40dd3a7
ea9ba29
 
0ba4242
 
40dd3a7
4bcff80
40dd3a7
 
 
 
 
0ba4242
fca22b9
40dd3a7
 
 
0ba4242
fca22b9
 
 
0ba4242
47473ae
0c1b8f7
2aadb64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
import time

# =============================================================================
# New imports and helper classes for image generation
# =============================================================================
try:
    # We use Hugging Face’s InferenceClient as a generic image-generation API client.
    from huggingface_hub import InferenceClient as HFInferenceClient
except ImportError:
    HFInferenceClient = None

# A simple wrapper client for our primary image-generation space.
class Client:
    def __init__(self, repo_id):
        self.repo_id = repo_id
        if HFInferenceClient is not None:
            self.client = HFInferenceClient(repo_id)
        else:
            self.client = None

    def predict(self, task, arg2, prompt, api_name):
        if self.client is not None:
            # Here we assume that calling the client with the prompt returns an image.
            # (Depending on your API, you might need to adjust parameters.)
            return self.client(prompt)
        else:
            raise Exception("HFInferenceClient not available")

def image_gen(prompt):
    """
    Uses the STABLE-HAMSTER space to generate an image based on the prompt.
    """
    client = Client("prithivMLmods/STABLE-HAMSTER")
    return client.predict("Image Generation", None, prompt, api_name="/stable_hamster")

# =============================================================================
# Original Code (with modifications below)
# =============================================================================

DESCRIPTION = """
# QwQ Edge 💬
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

# Load multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, TTS, and now image generation.
    If the query starts with an @tts command (e.g. "@tts1"), previous chat history is cleared.
    If the query starts with an @image command, the image generation branch is used.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # -------------------------------------------------------------------------
    # NEW: Check for image generation command (@image)
    # -------------------------------------------------------------------------
    image_prefix = "@image"
    if text.strip().lower().startswith(image_prefix):
        # Remove the prefix and any extra whitespace
        query = text[len(image_prefix):].strip()
        yield "Generating Image, Please wait 10 sec..."
        try:
            image = image_gen(query)
            # If the API returns a tuple (as in the snippet) use the second element;
            # otherwise assume it returns an image directly.
            if isinstance(image, (list, tuple)) and len(image) > 1:
                yield gr.Image(image[1])
            else:
                yield gr.Image(image)
        except Exception as e:
            yield "Error in primary image generation, trying fallback..."
            try:
                # Use the fallback image generation client.
                if HFInferenceClient is not None:
                    client_flux = HFInferenceClient("black-forest-labs/FLUX.1-schnell")
                    image = client_flux.text_to_image(query)
                    yield gr.Image(image)
                else:
                    yield "Fallback client not available."
            except Exception as fallback_error:
                yield f"Error in image generation: {str(fallback_error)}"
        return  # End execution after processing the image-generation request.

    # -------------------------------------------------------------------------
    # Continue with the original processing (image files, TTS, or text conversation)
    # -------------------------------------------------------------------------
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)

    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        # Clear any previous chat history to avoid concatenation issues
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if images:
        # Multimodal branch using the OCR model
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield "Thinking..."
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        # Text-only branch using the text model
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
        ["Write a Python function to check if a number is prime."],
        ["@tts2 What causes rainbows to form?"],
        ["@image A beautiful sunset over a mountain range"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)