Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,631 Bytes
0c1b8f7 b06a87f 0c1b8f7 fca22b9 0c1b8f7 32d8e74 b06a87f fca22b9 40dd3a7 fca22b9 40dd3a7 34d2094 fca22b9 d6b5ac6 40dd3a7 34d2094 fca22b9 0886910 fca22b9 d7f29b6 7f471f2 b06a87f 83a0174 40dd3a7 83a0174 48a6837 40dd3a7 fca22b9 a592e13 40dd3a7 d6b5ac6 40dd3a7 ea9ba29 fca22b9 0ba4242 fca22b9 40dd3a7 ea9ba29 40dd3a7 ea9ba29 0ba4242 40dd3a7 4bcff80 40dd3a7 0ba4242 fca22b9 40dd3a7 0ba4242 fca22b9 0ba4242 47473ae 0c1b8f7 2aadb64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
from threading import Thread
import gradio as gr
import spaces
import torch
import edge_tts
import asyncio
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from transformers.image_utils import load_image
import time
# =============================================================================
# New imports and helper classes for image generation
# =============================================================================
try:
# We use Hugging Face’s InferenceClient as a generic image-generation API client.
from huggingface_hub import InferenceClient as HFInferenceClient
except ImportError:
HFInferenceClient = None
# A simple wrapper client for our primary image-generation space.
class Client:
def __init__(self, repo_id):
self.repo_id = repo_id
if HFInferenceClient is not None:
self.client = HFInferenceClient(repo_id)
else:
self.client = None
def predict(self, task, arg2, prompt, api_name):
if self.client is not None:
# Here we assume that calling the client with the prompt returns an image.
# (Depending on your API, you might need to adjust parameters.)
return self.client(prompt)
else:
raise Exception("HFInferenceClient not available")
def image_gen(prompt):
"""
Uses the STABLE-HAMSTER space to generate an image based on the prompt.
"""
client = Client("prithivMLmods/STABLE-HAMSTER")
return client.predict("Image Generation", None, prompt, api_name="/stable_hamster")
# =============================================================================
# Original Code (with modifications below)
# =============================================================================
DESCRIPTION = """
# QwQ Edge 💬
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
# Load multimodal (OCR) model and processor
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
This helps prevent errors when concatenating previous messages.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates chatbot responses with support for multimodal input, TTS, and now image generation.
If the query starts with an @tts command (e.g. "@tts1"), previous chat history is cleared.
If the query starts with an @image command, the image generation branch is used.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# -------------------------------------------------------------------------
# NEW: Check for image generation command (@image)
# -------------------------------------------------------------------------
image_prefix = "@image"
if text.strip().lower().startswith(image_prefix):
# Remove the prefix and any extra whitespace
query = text[len(image_prefix):].strip()
yield "Generating Image, Please wait 10 sec..."
try:
image = image_gen(query)
# If the API returns a tuple (as in the snippet) use the second element;
# otherwise assume it returns an image directly.
if isinstance(image, (list, tuple)) and len(image) > 1:
yield gr.Image(image[1])
else:
yield gr.Image(image)
except Exception as e:
yield "Error in primary image generation, trying fallback..."
try:
# Use the fallback image generation client.
if HFInferenceClient is not None:
client_flux = HFInferenceClient("black-forest-labs/FLUX.1-schnell")
image = client_flux.text_to_image(query)
yield gr.Image(image)
else:
yield "Fallback client not available."
except Exception as fallback_error:
yield f"Error in image generation: {str(fallback_error)}"
return # End execution after processing the image-generation request.
# -------------------------------------------------------------------------
# Continue with the original processing (image files, TTS, or text conversation)
# -------------------------------------------------------------------------
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
# Clear any previous chat history to avoid concatenation issues
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if images:
# Multimodal branch using the OCR model
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
# Text-only branch using the text model
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts1 Who is Nikola Tesla, and why did he die?"],
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["Write a Python function to check if a number is prime."],
["@tts2 What causes rainbows to form?"],
["@image A beautiful sunset over a mountain range"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |