prithivMLmods's picture
Update app.py
5a70700 verified
raw
history blame
9.17 kB
import gradio as gr
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
# A constant for token length limit
MAX_INPUT_TOKEN_LENGTH = 4096
# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -----------------------
# Video Downsampling Helper
# -----------------------
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# -----------------------
# Qwen2.5-VL Multimodal Setup
# -----------------------
MODEL_ID_QWEN = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_QWEN,
trust_remote_code=True,
torch_dtype=torch.float16 # Use float16 for more stability
).to("cuda").eval()
# -----------------------
# DeepHermes Text Generation Setup
# -----------------------
text_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)
text_model = AutoModelForCausalLM.from_pretrained(
text_model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
text_model.eval()
# -----------------------
# Main Inference Function
# -----------------------
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict.get("files", [])
# -----------------------
# Video Inference Branch
# -----------------------
if text.strip().lower().startswith("@video-infer"):
# Remove the tag from the query.
text = text[len("@video-infer"):].strip()
if not files:
gr.Error("Please upload a video file along with your @video-infer query.")
return
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
gr.Error("Could not process video.")
return
# Build messages: start with the text prompt.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
# Append each frame with a timestamp label.
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect only the images from the frames.
video_images = [image for image, _ in frames]
# Prepare the prompt.
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
# Clear CUDA cache to reduce potential memory fragmentation.
torch.cuda.empty_cache()
# Set up streaming generation.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# -----------------------
# Text-Only Inference Branch (using DeepHermes text generation)
# -----------------------
if not files:
# Prepare a simple conversation for text-only input.
conversation = [{"role": "user", "content": text}]
# Use the text tokenizer’s chat template method.
input_ids = text_tokenizer.apply_chat_template(
conversation, add_generation_prompt=True, return_tensors="pt"
)
# Trim if necessary.
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(text_model.device)
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": 1024,
"do_sample": True,
"top_p": 0.9,
"top_k": 50,
"temperature": 0.6,
"num_beams": 1,
"repetition_penalty": 1.2,
}
thread = Thread(target=text_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with DeepHermes Text Generation Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# -----------------------
# Multimodal (Image) Inference Branch with Qwen2.5-VL
# -----------------------
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
return
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
# Clear CUDA cache before generation.
torch.cuda.empty_cache()
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# -----------------------
# Gradio Chat Interface
# -----------------------
examples = [
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
[{"text": "Tell me a story about a brave knight in a faraway kingdom."}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(share=True, debug=True)