File size: 9,174 Bytes
09dd649
17b06a6
 
 
 
 
 
 
466e3e5
ab0c591
 
 
 
 
 
 
09dd649
17b06a6
 
 
 
 
 
a5d07a8
ea33f68
 
323e41c
ea33f68
a5d07a8
ea33f68
 
 
 
a5d07a8
ea33f68
 
 
 
 
 
 
a5d07a8
 
17b06a6
 
 
323e41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17b06a6
 
 
 
 
 
 
09dd649
846456e
09dd649
 
17b06a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09dd649
 
 
17b06a6
09dd649
17b06a6
 
 
323e41c
d418457
323e41c
 
d418457
323e41c
d418457
323e41c
 
 
d418457
323e41c
d418457
323e41c
 
 
 
 
 
d418457
323e41c
 
 
d418457
323e41c
d418457
323e41c
 
 
 
 
 
 
846456e
 
d418457
323e41c
 
17b06a6
323e41c
 
 
 
 
 
 
 
 
17b06a6
 
 
 
 
 
846456e
17b06a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d418457
 
 
 
 
 
ab0c591
d418457
 
466e3e5
 
d418457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
846456e
 
d418457
 
17b06a6
ab0c591
 
d418457
ab0c591
 
 
 
09dd649
17b06a6
 
 
09dd649
ab0c591
17b06a6
c9fe6dd
88290c8
09dd649
 
 
 
9a4bcc3
09dd649
78c40b7
323e41c
09dd649
 
 
 
 
17b06a6
846456e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
from transformers import (
    AutoProcessor, 
    Qwen2_5_VLForConditionalGeneration, 
    TextIteratorStreamer,
    AutoModelForCausalLM,
    AutoTokenizer,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image

# A constant for token length limit
MAX_INPUT_TOKEN_LENGTH = 4096

# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# -----------------------
# Video Downsampling Helper
# -----------------------
def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is converted to a PIL Image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    if total_frames <= 0 or fps <= 0:
        vidcap.release()
        return frames
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# -----------------------
# Qwen2.5-VL Multimodal Setup
# -----------------------
MODEL_ID_QWEN = "Qwen/Qwen2.5-VL-7B-Instruct"  # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_QWEN,
    trust_remote_code=True,
    torch_dtype=torch.float16  # Use float16 for more stability
).to("cuda").eval()

# -----------------------
# DeepHermes Text Generation Setup
# -----------------------
text_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)
text_model = AutoModelForCausalLM.from_pretrained(
    text_model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
text_model.eval()

# -----------------------
# Main Inference Function
# -----------------------
@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # -----------------------
    # Video Inference Branch
    # -----------------------
    if text.strip().lower().startswith("@video-infer"):
        # Remove the tag from the query.
        text = text[len("@video-infer"):].strip()
        if not files:
            gr.Error("Please upload a video file along with your @video-infer query.")
            return
        # Assume the first file is a video.
        video_path = files[0]
        frames = downsample_video(video_path)
        if not frames:
            gr.Error("Could not process video.")
            return
        # Build messages: start with the text prompt.
        messages = [
            {
                "role": "user",
                "content": [{"type": "text", "text": text}]
            }
        ]
        # Append each frame with a timestamp label.
        for image, timestamp in frames:
            messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
            messages[0]["content"].append({"type": "image", "image": image})
        # Collect only the images from the frames.
        video_images = [image for image, _ in frames]
        # Prepare the prompt.
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt],
            images=video_images,
            return_tensors="pt",
            padding=True,
        ).to("cuda")
        # Clear CUDA cache to reduce potential memory fragmentation.
        torch.cuda.empty_cache()
        # Set up streaming generation.
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
        thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2.5VL Model")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # -----------------------
    # Text-Only Inference Branch (using DeepHermes text generation)
    # -----------------------
    if not files:
        # Prepare a simple conversation for text-only input.
        conversation = [{"role": "user", "content": text}]
        # Use the text tokenizer’s chat template method.
        input_ids = text_tokenizer.apply_chat_template(
            conversation, add_generation_prompt=True, return_tensors="pt"
        )
        # Trim if necessary.
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(text_model.device)
        streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": 1024,
            "do_sample": True,
            "top_p": 0.9,
            "top_k": 50,
            "temperature": 0.6,
            "num_beams": 1,
            "repetition_penalty": 1.2,
        }
        thread = Thread(target=text_model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing with DeepHermes Text Generation Model")
        for new_text in streamer:
            buffer += new_text
            time.sleep(0.01)
            yield buffer
        return

    # -----------------------
    # Multimodal (Image) Inference Branch with Qwen2.5-VL
    # -----------------------
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []

    if text == "" and images:
        gr.Error("Please input a text query along with the image(s).")
        return

    messages = [
        {
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ],
        }
    ]
    prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt],
        images=images if images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")
    # Clear CUDA cache before generation.
    torch.cuda.empty_cache()
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    yield progress_bar_html("Processing with Qwen2.5VL Model")
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

# -----------------------
# Gradio Chat Interface
# -----------------------
examples = [
    [{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
    [{"text": "Tell me a story about a brave knight in a faraway kingdom."}],
    [{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
    [{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
    examples=examples,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

if __name__ == "__main__":
    demo.launch(share=True, debug=True)