prithivMLmods commited on
Commit
79b053d
·
verified ·
1 Parent(s): 35e8372
Files changed (1) hide show
  1. app.py +130 -140
app.py CHANGED
@@ -13,17 +13,12 @@ import gradio as gr
13
  import spaces
14
  from diffusers import (
15
  DiffusionPipeline,
16
- AutoencoderKL,
17
- AutoencoderTiny,
18
- AutoPipelineForImage2Image,
19
- FlowMatchEulerDiscreteScheduler
20
- )
21
  from huggingface_hub import (
22
  hf_hub_download,
23
  HfFileSystem,
24
  ModelCard,
25
- snapshot_download
26
- )
27
  from diffusers.utils import load_image
28
  import requests
29
  from urllib.parse import urlparse
@@ -120,14 +115,10 @@ loras = [
120
  },
121
  ]
122
 
123
- # Initialize the base model and autoencoders
124
  dtype = torch.bfloat16
125
  base_model = "Qwen/Qwen-Image"
126
 
127
- # Initialize TAEF1 for fast previews and the standard VAE for high-quality final images
128
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
129
- good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
130
-
131
  # Scheduler configuration from the Qwen-Image-Lightning repository
132
  scheduler_config = {
133
  "base_image_seq_len": 256,
@@ -147,21 +138,10 @@ scheduler_config = {
147
  }
148
 
149
  scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
150
-
151
- # Main pipeline for text-to-image, using taef1 for fast decoding during generation
152
  pipe = DiffusionPipeline.from_pretrained(
153
- base_model, scheduler=scheduler, torch_dtype=dtype, vae=taef1
154
- ).to(device)
155
-
156
- # Image-to-image pipeline, using the high-quality VAE
157
- pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
158
- base_model,
159
- vae=good_vae,
160
- scheduler=scheduler,
161
- torch_dtype=dtype
162
  ).to(device)
163
 
164
-
165
  # Lightning LoRA info (no global state)
166
  LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
167
  LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
@@ -232,32 +212,29 @@ def adjust_generation_mode(speed_mode):
232
  else:
233
  return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
234
 
235
- def image_to_image_generation(prompt_mash, image_input, strength, steps, cfg_scale, width, height, lora_scale, seed):
236
- """Handles the image-to-image generation process."""
 
237
  generator = torch.Generator(device="cuda").manual_seed(seed)
238
- pipe_i2i.to("cuda")
239
 
240
- # Resize and convert input image
241
- image_input_pil = load_image(image_input).resize((width, height), Image.Resampling.LANCZOS)
242
-
243
- final_image = pipe_i2i(
244
- prompt=prompt_mash,
245
- image=image_input_pil,
246
- strength=strength,
247
- num_inference_steps=steps,
248
- guidance_scale=cfg_scale,
249
- generator=generator,
250
- # Note: image-to-image with Qwen doesn't use `true_cfg_scale`
251
- ).images[0]
252
- return final_image
253
 
254
  @spaces.GPU(duration=100)
255
- def process_generation_request(
256
- prompt, image_input, image_strength, cfg_scale, steps, selected_index,
257
- randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)
258
- ):
259
  if selected_index is None:
260
- raise gr.Error("You must select a LoRA before proceeding.🧨")
261
 
262
  selected_lora = loras[selected_index]
263
  lora_path = selected_lora["repo"]
@@ -265,85 +242,63 @@ def process_generation_request(
265
 
266
  # Prepare prompt with trigger word
267
  if trigger_word:
268
- prompt_mash = f"{trigger_word}, {prompt}" if prompt else trigger_word
 
 
 
 
 
 
269
  else:
270
  prompt_mash = prompt
271
 
272
- # Set random seed if requested
273
- if randomize_seed:
274
- seed = random.randint(0, MAX_SEED)
275
-
276
- # Determine which pipeline to use
277
- pipe_to_use = pipe_i2i if image_input is not None else pipe
278
-
279
  # Always unload any existing LoRAs first to avoid conflicts
280
  with Timer("Unloading existing LoRAs"):
281
- pipe_to_use.unload_lora_weights()
282
 
283
  # Load LoRAs based on speed mode
284
  if speed_mode == "Fast (8 steps)":
285
  with Timer("Loading Lightning LoRA and style LoRA"):
286
- pipe_to_use.load_lora_weights(
 
287
  LIGHTNING_LORA_REPO,
288
  weight_name=LIGHTNING_LORA_WEIGHT,
289
  adapter_name="lightning"
290
  )
291
- weight_name = selected_lora.get("weights")
292
- pipe_to_use.load_lora_weights(
 
 
293
  lora_path,
294
  weight_name=weight_name,
 
295
  adapter_name="style"
296
  )
297
- pipe_to_use.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
298
- else: # Quality mode
 
 
 
299
  with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
300
- weight_name = selected_lora.get("weights")
301
- pipe_to_use.load_lora_weights(lora_path, weight_name=weight_name)
 
 
 
 
 
 
 
 
 
302
 
 
303
  width, height = compute_image_dimensions(aspect_ratio)
304
-
305
- # --- Generation ---
306
- if image_input is not None:
307
- # Image-to-Image Generation
308
- final_image = image_to_image_generation(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
309
- yield final_image, seed, gr.update(visible=False)
310
- else:
311
- # Text-to-Image Generation with Previews
312
- pipe.to("cuda")
313
- generator = torch.Generator(device="cuda").manual_seed(seed)
314
-
315
- # Callback for generating previews
316
- def callback_on_step_end(pipe, step_index, timestep, callback_kwargs):
317
- latents = callback_kwargs["latents"]
318
- # Use the fast taef1 decoder for previews
319
- with torch.no_grad():
320
- image = pipe.decode_latents(latents.to(dtype))[0]
321
- progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_index + 1}; --total: {steps};"></div></div>'
322
- yield {"image": image, "seed": seed, "progress": gr.update(value=progress_bar, visible=True)}
323
- return callback_kwargs
324
-
325
- # Generate image with step-by-step previews
326
- with Timer("Generating image with previews"):
327
- generation_output = pipe(
328
- prompt=prompt_mash,
329
- num_inference_steps=steps,
330
- true_cfg_scale=cfg_scale,
331
- width=width,
332
- height=height,
333
- generator=generator,
334
- output_type="latent", # Get latents to decode with the good VAE later
335
- callback_on_step_end=callback_on_step_end
336
- )
337
-
338
- # Decode the final image with the high-quality VAE
339
- with Timer("Final decoding with good VAE"):
340
- final_latents = generation_output.images
341
- pipe.vae = good_vae # Temporarily swap to the good VAE
342
- final_image = pipe.decode_latents(final_latents.to(dtype))[0]
343
- pipe.vae = taef1 # Swap back to taef1 for the next run
344
-
345
- yield final_image, seed, gr.update(visible=False)
346
-
347
 
348
  def fetch_hf_adapter_files(link):
349
  split_link = link.split("/")
@@ -352,37 +307,79 @@ def fetch_hf_adapter_files(link):
352
 
353
  print(f"Repository attempted: {split_link}")
354
 
 
355
  model_card = ModelCard.load(link)
356
  base_model = model_card.data.get("base_model")
357
  print(f"Base model: {base_model}")
358
 
 
359
  acceptable_models = {"Qwen/Qwen-Image"}
 
360
  models_to_check = base_model if isinstance(base_model, list) else [base_model]
361
 
362
  if not any(model in acceptable_models for model in models_to_check):
363
  raise Exception("Not a Qwen-Image LoRA!")
364
 
365
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url")
 
366
  trigger_word = model_card.data.get("instance_prompt", "")
367
  image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
368
 
 
369
  fs = HfFileSystem()
370
  try:
371
  list_of_files = fs.ls(link, detail=False)
372
- safetensors_name = next((f.split('/')[-1] for f in list_of_files if f.endswith(".safetensors")), None)
 
 
 
 
 
 
 
 
373
  if not safetensors_name:
374
  raise Exception("No valid *.safetensors file found in the repository.")
 
375
  except Exception as e:
376
  print(e)
377
- raise Exception("Could not find a valid *.safetensors file in the Hugging Face repository.")
378
 
379
  return split_link[1], link, safetensors_name, trigger_word, image_url
380
 
381
  def validate_custom_adapter(link):
382
  print(f"Checking a custom model on: {link}")
383
- if link.startswith("https://huggingface.co"):
384
- link = urlparse(link).path.strip("/")
385
- return fetch_hf_adapter_files(link)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386
 
387
  def incorporate_custom_adapter(custom_lora):
388
  global loras
@@ -402,21 +399,30 @@ def incorporate_custom_adapter(custom_lora):
402
  </div>
403
  </div>
404
  '''
405
- existing_item_index = next((i for i, item in enumerate(loras) if item['repo'] == repo), None)
406
  if existing_item_index is None:
407
- new_item = {"image": image, "title": title, "repo": repo, "weights": path, "trigger_word": trigger_word}
 
 
 
 
 
 
 
408
  loras.append(new_item)
409
- existing_item_index = len(loras) - 1
410
 
411
  return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
412
  except Exception as e:
413
- gr.Warning(f"Invalid LoRA: {e}")
414
- return gr.update(visible=True, value=f"Invalid LoRA: {e}"), gr.update(visible=True), gr.update(), "", None, ""
415
- return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
 
416
 
417
  def discard_custom_adapter():
418
  return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
419
 
 
420
 
421
  css = '''
422
  #gen_btn{height: 100%}
@@ -430,10 +436,6 @@ css = '''
430
  .card_internal img{margin-right: 1em}
431
  .styler{--form-gap-width: 0px !important}
432
  #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
433
- #progress{height:30px}
434
- #progress .generating{display:none}
435
- .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
436
- .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.1s ease-in-out}
437
  '''
438
 
439
  with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
@@ -457,10 +459,6 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
457
  elem_id="gallery",
458
  show_share_button=False
459
  )
460
- with gr.Accordion("Image-to-Image (Optional)", open=False):
461
- image_input = gr.Image(type="filepath", label="Input Image")
462
- image_strength = gr.Slider(label="Image Strength", minimum=0.1, maximum=1.0, step=0.05, value=0.6)
463
-
464
  with gr.Group():
465
  custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/lora-model-name")
466
  gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
@@ -469,14 +467,13 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
469
 
470
  with gr.Column():
471
  result = gr.Image(label="Generated Image")
472
- progress_bar = gr.HTML(visible=False, elem_id="progress")
473
 
474
  with gr.Row():
475
  aspect_ratio = gr.Dropdown(
476
  label="Aspect Ratio",
477
  choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
478
  value="1:1"
479
- )
480
  with gr.Row():
481
  speed_mode = gr.Dropdown(
482
  label="Output Mode",
@@ -491,12 +488,12 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
491
  with gr.Column():
492
  with gr.Row():
493
  cfg_scale = gr.Slider(
494
- label="Guidance Scale",
495
  minimum=1.0,
496
  maximum=5.0,
497
  step=0.1,
498
  value=4.0,
499
- info="Lower for speed mode, higher for quality. Also called 'True CFG'."
500
  )
501
  steps = gr.Slider(
502
  label="Steps",
@@ -536,18 +533,11 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
536
  outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
537
  )
538
 
539
- gen_inputs = [prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode]
540
- gen_outputs = [result, seed, progress_bar]
541
-
542
- generate_button.click(
543
- fn=process_generation_request,
544
- inputs=gen_inputs,
545
- outputs=gen_outputs
546
- )
547
- prompt.submit(
548
- fn=process_generation_request,
549
- inputs=gen_inputs,
550
- outputs=gen_outputs
551
  )
552
 
553
  app.queue()
 
13
  import spaces
14
  from diffusers import (
15
  DiffusionPipeline,
16
+ FlowMatchEulerDiscreteScheduler)
 
 
 
 
17
  from huggingface_hub import (
18
  hf_hub_download,
19
  HfFileSystem,
20
  ModelCard,
21
+ snapshot_download)
 
22
  from diffusers.utils import load_image
23
  import requests
24
  from urllib.parse import urlparse
 
115
  },
116
  ]
117
 
118
+ # Initialize the base model
119
  dtype = torch.bfloat16
120
  base_model = "Qwen/Qwen-Image"
121
 
 
 
 
 
122
  # Scheduler configuration from the Qwen-Image-Lightning repository
123
  scheduler_config = {
124
  "base_image_seq_len": 256,
 
138
  }
139
 
140
  scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
 
 
141
  pipe = DiffusionPipeline.from_pretrained(
142
+ base_model, scheduler=scheduler, torch_dtype=dtype
 
 
 
 
 
 
 
 
143
  ).to(device)
144
 
 
145
  # Lightning LoRA info (no global state)
146
  LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
147
  LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
 
212
  else:
213
  return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
214
 
215
+ @spaces.GPU(duration=100)
216
+ def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
217
+ pipe.to("cuda")
218
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
219
 
220
+ with Timer("Generating image"):
221
+ # Generate image
222
+ image = pipe(
223
+ prompt=prompt_mash,
224
+ negative_prompt=negative_prompt,
225
+ num_inference_steps=steps,
226
+ true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
227
+ width=width,
228
+ height=height,
229
+ generator=generator,
230
+ ).images[0]
231
+
232
+ return image
233
 
234
  @spaces.GPU(duration=100)
235
+ def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
 
 
 
236
  if selected_index is None:
237
+ raise gr.Error("You must select a LoRA before proceeding.")
238
 
239
  selected_lora = loras[selected_index]
240
  lora_path = selected_lora["repo"]
 
242
 
243
  # Prepare prompt with trigger word
244
  if trigger_word:
245
+ if "trigger_position" in selected_lora:
246
+ if selected_lora["trigger_position"] == "prepend":
247
+ prompt_mash = f"{trigger_word} {prompt}"
248
+ else:
249
+ prompt_mash = f"{prompt} {trigger_word}"
250
+ else:
251
+ prompt_mash = f"{trigger_word} {prompt}"
252
  else:
253
  prompt_mash = prompt
254
 
 
 
 
 
 
 
 
255
  # Always unload any existing LoRAs first to avoid conflicts
256
  with Timer("Unloading existing LoRAs"):
257
+ pipe.unload_lora_weights()
258
 
259
  # Load LoRAs based on speed mode
260
  if speed_mode == "Fast (8 steps)":
261
  with Timer("Loading Lightning LoRA and style LoRA"):
262
+ # Load Lightning LoRA first
263
+ pipe.load_lora_weights(
264
  LIGHTNING_LORA_REPO,
265
  weight_name=LIGHTNING_LORA_WEIGHT,
266
  adapter_name="lightning"
267
  )
268
+
269
+ # Load the selected style LoRA
270
+ weight_name = selected_lora.get("weights", None)
271
+ pipe.load_lora_weights(
272
  lora_path,
273
  weight_name=weight_name,
274
+ low_cpu_mem_usage=True,
275
  adapter_name="style"
276
  )
277
+
278
+ # Set both adapters active with their weights
279
+ pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
280
+ else:
281
+ # Quality mode - only load the style LoRA
282
  with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
283
+ weight_name = selected_lora.get("weights", None)
284
+ pipe.load_lora_weights(
285
+ lora_path,
286
+ weight_name=weight_name,
287
+ low_cpu_mem_usage=True
288
+ )
289
+
290
+ # Set random seed for reproducibility
291
+ with Timer("Randomizing seed"):
292
+ if randomize_seed:
293
+ seed = random.randint(0, MAX_SEED)
294
 
295
+ # Get image dimensions from aspect ratio
296
  width, height = compute_image_dimensions(aspect_ratio)
297
+
298
+ # Generate the image
299
+ final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
300
+
301
+ return final_image, seed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
 
303
  def fetch_hf_adapter_files(link):
304
  split_link = link.split("/")
 
307
 
308
  print(f"Repository attempted: {split_link}")
309
 
310
+ # Load model card
311
  model_card = ModelCard.load(link)
312
  base_model = model_card.data.get("base_model")
313
  print(f"Base model: {base_model}")
314
 
315
+ # Validate model type (for Qwen-Image)
316
  acceptable_models = {"Qwen/Qwen-Image"}
317
+
318
  models_to_check = base_model if isinstance(base_model, list) else [base_model]
319
 
320
  if not any(model in acceptable_models for model in models_to_check):
321
  raise Exception("Not a Qwen-Image LoRA!")
322
 
323
+ # Extract image and trigger word
324
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
325
  trigger_word = model_card.data.get("instance_prompt", "")
326
  image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
327
 
328
+ # Initialize Hugging Face file system
329
  fs = HfFileSystem()
330
  try:
331
  list_of_files = fs.ls(link, detail=False)
332
+
333
+ # Find safetensors file
334
+ safetensors_name = None
335
+ for file in list_of_files:
336
+ filename = file.split("/")[-1]
337
+ if filename.endswith(".safetensors"):
338
+ safetensors_name = filename
339
+ break
340
+
341
  if not safetensors_name:
342
  raise Exception("No valid *.safetensors file found in the repository.")
343
+
344
  except Exception as e:
345
  print(e)
346
+ raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
347
 
348
  return split_link[1], link, safetensors_name, trigger_word, image_url
349
 
350
  def validate_custom_adapter(link):
351
  print(f"Checking a custom model on: {link}")
352
+
353
+ if link.endswith('.safetensors'):
354
+ if 'huggingface.co' in link:
355
+ parts = link.split('/')
356
+ try:
357
+ hf_index = parts.index('huggingface.co')
358
+ username = parts[hf_index + 1]
359
+ repo_name = parts[hf_index + 2]
360
+ repo = f"{username}/{repo_name}"
361
+
362
+ safetensors_name = parts[-1]
363
+
364
+ try:
365
+ model_card = ModelCard.load(repo)
366
+ trigger_word = model_card.data.get("instance_prompt", "")
367
+ image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
368
+ image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
369
+ except:
370
+ trigger_word = ""
371
+ image_url = None
372
+
373
+ return repo_name, repo, safetensors_name, trigger_word, image_url
374
+ except:
375
+ raise Exception("Invalid safetensors URL format")
376
+
377
+ if link.startswith("https://"):
378
+ if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
379
+ link_split = link.split("huggingface.co/")
380
+ return fetch_hf_adapter_files(link_split[1])
381
+ else:
382
+ return fetch_hf_adapter_files(link)
383
 
384
  def incorporate_custom_adapter(custom_lora):
385
  global loras
 
399
  </div>
400
  </div>
401
  '''
402
+ existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
403
  if existing_item_index is None:
404
+ new_item = {
405
+ "image": image,
406
+ "title": title,
407
+ "repo": repo,
408
+ "weights": path,
409
+ "trigger_word": trigger_word
410
+ }
411
+ print(new_item)
412
  loras.append(new_item)
413
+ existing_item_index = len(loras) - 1 # Get the actual index after adding
414
 
415
  return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
416
  except Exception as e:
417
+ gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
418
+ return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
419
+ else:
420
+ return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
421
 
422
  def discard_custom_adapter():
423
  return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
424
 
425
+ process_adapter_generation.zerogpu = True
426
 
427
  css = '''
428
  #gen_btn{height: 100%}
 
436
  .card_internal img{margin-right: 1em}
437
  .styler{--form-gap-width: 0px !important}
438
  #speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
 
 
 
 
439
  '''
440
 
441
  with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
 
459
  elem_id="gallery",
460
  show_share_button=False
461
  )
 
 
 
 
462
  with gr.Group():
463
  custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/lora-model-name")
464
  gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
 
467
 
468
  with gr.Column():
469
  result = gr.Image(label="Generated Image")
 
470
 
471
  with gr.Row():
472
  aspect_ratio = gr.Dropdown(
473
  label="Aspect Ratio",
474
  choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
475
  value="1:1"
476
+ )
477
  with gr.Row():
478
  speed_mode = gr.Dropdown(
479
  label="Output Mode",
 
488
  with gr.Column():
489
  with gr.Row():
490
  cfg_scale = gr.Slider(
491
+ label="Guidance Scale (True CFG)",
492
  minimum=1.0,
493
  maximum=5.0,
494
  step=0.1,
495
  value=4.0,
496
+ info="Lower for speed mode, higher for quality"
497
  )
498
  steps = gr.Slider(
499
  label="Steps",
 
533
  outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
534
  )
535
 
536
+ gr.on(
537
+ triggers=[generate_button.click, prompt.submit],
538
+ fn=process_adapter_generation,
539
+ inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
540
+ outputs=[result, seed]
 
 
 
 
 
 
 
541
  )
542
 
543
  app.queue()