Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
@@ -13,17 +13,12 @@ import gradio as gr
|
|
13 |
import spaces
|
14 |
from diffusers import (
|
15 |
DiffusionPipeline,
|
16 |
-
|
17 |
-
AutoencoderTiny,
|
18 |
-
AutoPipelineForImage2Image,
|
19 |
-
FlowMatchEulerDiscreteScheduler
|
20 |
-
)
|
21 |
from huggingface_hub import (
|
22 |
hf_hub_download,
|
23 |
HfFileSystem,
|
24 |
ModelCard,
|
25 |
-
snapshot_download
|
26 |
-
)
|
27 |
from diffusers.utils import load_image
|
28 |
import requests
|
29 |
from urllib.parse import urlparse
|
@@ -120,14 +115,10 @@ loras = [
|
|
120 |
},
|
121 |
]
|
122 |
|
123 |
-
# Initialize the base model
|
124 |
dtype = torch.bfloat16
|
125 |
base_model = "Qwen/Qwen-Image"
|
126 |
|
127 |
-
# Initialize TAEF1 for fast previews and the standard VAE for high-quality final images
|
128 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
129 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
130 |
-
|
131 |
# Scheduler configuration from the Qwen-Image-Lightning repository
|
132 |
scheduler_config = {
|
133 |
"base_image_seq_len": 256,
|
@@ -147,21 +138,10 @@ scheduler_config = {
|
|
147 |
}
|
148 |
|
149 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
150 |
-
|
151 |
-
# Main pipeline for text-to-image, using taef1 for fast decoding during generation
|
152 |
pipe = DiffusionPipeline.from_pretrained(
|
153 |
-
base_model, scheduler=scheduler, torch_dtype=dtype
|
154 |
-
).to(device)
|
155 |
-
|
156 |
-
# Image-to-image pipeline, using the high-quality VAE
|
157 |
-
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
158 |
-
base_model,
|
159 |
-
vae=good_vae,
|
160 |
-
scheduler=scheduler,
|
161 |
-
torch_dtype=dtype
|
162 |
).to(device)
|
163 |
|
164 |
-
|
165 |
# Lightning LoRA info (no global state)
|
166 |
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
|
167 |
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
|
@@ -232,32 +212,29 @@ def adjust_generation_mode(speed_mode):
|
|
232 |
else:
|
233 |
return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
|
234 |
|
235 |
-
|
236 |
-
|
|
|
237 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
238 |
-
pipe_i2i.to("cuda")
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
return
|
253 |
|
254 |
@spaces.GPU(duration=100)
|
255 |
-
def
|
256 |
-
prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
257 |
-
randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)
|
258 |
-
):
|
259 |
if selected_index is None:
|
260 |
-
raise gr.Error("You must select a LoRA before proceeding
|
261 |
|
262 |
selected_lora = loras[selected_index]
|
263 |
lora_path = selected_lora["repo"]
|
@@ -265,85 +242,63 @@ def process_generation_request(
|
|
265 |
|
266 |
# Prepare prompt with trigger word
|
267 |
if trigger_word:
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
else:
|
270 |
prompt_mash = prompt
|
271 |
|
272 |
-
# Set random seed if requested
|
273 |
-
if randomize_seed:
|
274 |
-
seed = random.randint(0, MAX_SEED)
|
275 |
-
|
276 |
-
# Determine which pipeline to use
|
277 |
-
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
278 |
-
|
279 |
# Always unload any existing LoRAs first to avoid conflicts
|
280 |
with Timer("Unloading existing LoRAs"):
|
281 |
-
|
282 |
|
283 |
# Load LoRAs based on speed mode
|
284 |
if speed_mode == "Fast (8 steps)":
|
285 |
with Timer("Loading Lightning LoRA and style LoRA"):
|
286 |
-
|
|
|
287 |
LIGHTNING_LORA_REPO,
|
288 |
weight_name=LIGHTNING_LORA_WEIGHT,
|
289 |
adapter_name="lightning"
|
290 |
)
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
lora_path,
|
294 |
weight_name=weight_name,
|
|
|
295 |
adapter_name="style"
|
296 |
)
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
299 |
with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
|
300 |
-
weight_name = selected_lora.get("weights")
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
|
|
303 |
width, height = compute_image_dimensions(aspect_ratio)
|
304 |
-
|
305 |
-
#
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
yield final_image, seed, gr.update(visible=False)
|
310 |
-
else:
|
311 |
-
# Text-to-Image Generation with Previews
|
312 |
-
pipe.to("cuda")
|
313 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
314 |
-
|
315 |
-
# Callback for generating previews
|
316 |
-
def callback_on_step_end(pipe, step_index, timestep, callback_kwargs):
|
317 |
-
latents = callback_kwargs["latents"]
|
318 |
-
# Use the fast taef1 decoder for previews
|
319 |
-
with torch.no_grad():
|
320 |
-
image = pipe.decode_latents(latents.to(dtype))[0]
|
321 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_index + 1}; --total: {steps};"></div></div>'
|
322 |
-
yield {"image": image, "seed": seed, "progress": gr.update(value=progress_bar, visible=True)}
|
323 |
-
return callback_kwargs
|
324 |
-
|
325 |
-
# Generate image with step-by-step previews
|
326 |
-
with Timer("Generating image with previews"):
|
327 |
-
generation_output = pipe(
|
328 |
-
prompt=prompt_mash,
|
329 |
-
num_inference_steps=steps,
|
330 |
-
true_cfg_scale=cfg_scale,
|
331 |
-
width=width,
|
332 |
-
height=height,
|
333 |
-
generator=generator,
|
334 |
-
output_type="latent", # Get latents to decode with the good VAE later
|
335 |
-
callback_on_step_end=callback_on_step_end
|
336 |
-
)
|
337 |
-
|
338 |
-
# Decode the final image with the high-quality VAE
|
339 |
-
with Timer("Final decoding with good VAE"):
|
340 |
-
final_latents = generation_output.images
|
341 |
-
pipe.vae = good_vae # Temporarily swap to the good VAE
|
342 |
-
final_image = pipe.decode_latents(final_latents.to(dtype))[0]
|
343 |
-
pipe.vae = taef1 # Swap back to taef1 for the next run
|
344 |
-
|
345 |
-
yield final_image, seed, gr.update(visible=False)
|
346 |
-
|
347 |
|
348 |
def fetch_hf_adapter_files(link):
|
349 |
split_link = link.split("/")
|
@@ -352,37 +307,79 @@ def fetch_hf_adapter_files(link):
|
|
352 |
|
353 |
print(f"Repository attempted: {split_link}")
|
354 |
|
|
|
355 |
model_card = ModelCard.load(link)
|
356 |
base_model = model_card.data.get("base_model")
|
357 |
print(f"Base model: {base_model}")
|
358 |
|
|
|
359 |
acceptable_models = {"Qwen/Qwen-Image"}
|
|
|
360 |
models_to_check = base_model if isinstance(base_model, list) else [base_model]
|
361 |
|
362 |
if not any(model in acceptable_models for model in models_to_check):
|
363 |
raise Exception("Not a Qwen-Image LoRA!")
|
364 |
|
365 |
-
|
|
|
366 |
trigger_word = model_card.data.get("instance_prompt", "")
|
367 |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
368 |
|
|
|
369 |
fs = HfFileSystem()
|
370 |
try:
|
371 |
list_of_files = fs.ls(link, detail=False)
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
if not safetensors_name:
|
374 |
raise Exception("No valid *.safetensors file found in the repository.")
|
|
|
375 |
except Exception as e:
|
376 |
print(e)
|
377 |
-
raise Exception("
|
378 |
|
379 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
380 |
|
381 |
def validate_custom_adapter(link):
|
382 |
print(f"Checking a custom model on: {link}")
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
def incorporate_custom_adapter(custom_lora):
|
388 |
global loras
|
@@ -402,21 +399,30 @@ def incorporate_custom_adapter(custom_lora):
|
|
402 |
</div>
|
403 |
</div>
|
404 |
'''
|
405 |
-
existing_item_index = next((
|
406 |
if existing_item_index is None:
|
407 |
-
new_item = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
loras.append(new_item)
|
409 |
-
existing_item_index = len(loras) - 1
|
410 |
|
411 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
412 |
except Exception as e:
|
413 |
-
gr.Warning(f"Invalid LoRA: {e}")
|
414 |
-
return gr.update(visible=True, value=f"Invalid LoRA:
|
415 |
-
|
|
|
416 |
|
417 |
def discard_custom_adapter():
|
418 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
419 |
|
|
|
420 |
|
421 |
css = '''
|
422 |
#gen_btn{height: 100%}
|
@@ -430,10 +436,6 @@ css = '''
|
|
430 |
.card_internal img{margin-right: 1em}
|
431 |
.styler{--form-gap-width: 0px !important}
|
432 |
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
|
433 |
-
#progress{height:30px}
|
434 |
-
#progress .generating{display:none}
|
435 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
436 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.1s ease-in-out}
|
437 |
'''
|
438 |
|
439 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
@@ -457,10 +459,6 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
457 |
elem_id="gallery",
|
458 |
show_share_button=False
|
459 |
)
|
460 |
-
with gr.Accordion("Image-to-Image (Optional)", open=False):
|
461 |
-
image_input = gr.Image(type="filepath", label="Input Image")
|
462 |
-
image_strength = gr.Slider(label="Image Strength", minimum=0.1, maximum=1.0, step=0.05, value=0.6)
|
463 |
-
|
464 |
with gr.Group():
|
465 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/lora-model-name")
|
466 |
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
|
@@ -469,14 +467,13 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
469 |
|
470 |
with gr.Column():
|
471 |
result = gr.Image(label="Generated Image")
|
472 |
-
progress_bar = gr.HTML(visible=False, elem_id="progress")
|
473 |
|
474 |
with gr.Row():
|
475 |
aspect_ratio = gr.Dropdown(
|
476 |
label="Aspect Ratio",
|
477 |
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
|
478 |
value="1:1"
|
479 |
-
|
480 |
with gr.Row():
|
481 |
speed_mode = gr.Dropdown(
|
482 |
label="Output Mode",
|
@@ -491,12 +488,12 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
491 |
with gr.Column():
|
492 |
with gr.Row():
|
493 |
cfg_scale = gr.Slider(
|
494 |
-
label="Guidance Scale",
|
495 |
minimum=1.0,
|
496 |
maximum=5.0,
|
497 |
step=0.1,
|
498 |
value=4.0,
|
499 |
-
info="Lower for speed mode, higher for quality
|
500 |
)
|
501 |
steps = gr.Slider(
|
502 |
label="Steps",
|
@@ -536,18 +533,11 @@ with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120))
|
|
536 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
537 |
)
|
538 |
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
inputs=gen_inputs,
|
545 |
-
outputs=gen_outputs
|
546 |
-
)
|
547 |
-
prompt.submit(
|
548 |
-
fn=process_generation_request,
|
549 |
-
inputs=gen_inputs,
|
550 |
-
outputs=gen_outputs
|
551 |
)
|
552 |
|
553 |
app.queue()
|
|
|
13 |
import spaces
|
14 |
from diffusers import (
|
15 |
DiffusionPipeline,
|
16 |
+
FlowMatchEulerDiscreteScheduler)
|
|
|
|
|
|
|
|
|
17 |
from huggingface_hub import (
|
18 |
hf_hub_download,
|
19 |
HfFileSystem,
|
20 |
ModelCard,
|
21 |
+
snapshot_download)
|
|
|
22 |
from diffusers.utils import load_image
|
23 |
import requests
|
24 |
from urllib.parse import urlparse
|
|
|
115 |
},
|
116 |
]
|
117 |
|
118 |
+
# Initialize the base model
|
119 |
dtype = torch.bfloat16
|
120 |
base_model = "Qwen/Qwen-Image"
|
121 |
|
|
|
|
|
|
|
|
|
122 |
# Scheduler configuration from the Qwen-Image-Lightning repository
|
123 |
scheduler_config = {
|
124 |
"base_image_seq_len": 256,
|
|
|
138 |
}
|
139 |
|
140 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
|
|
|
|
141 |
pipe = DiffusionPipeline.from_pretrained(
|
142 |
+
base_model, scheduler=scheduler, torch_dtype=dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
).to(device)
|
144 |
|
|
|
145 |
# Lightning LoRA info (no global state)
|
146 |
LIGHTNING_LORA_REPO = "lightx2v/Qwen-Image-Lightning"
|
147 |
LIGHTNING_LORA_WEIGHT = "Qwen-Image-Lightning-8steps-V1.0.safetensors"
|
|
|
212 |
else:
|
213 |
return gr.update(value="Base mode selected - 48 steps for best quality"), 48, 4.0
|
214 |
|
215 |
+
@spaces.GPU(duration=100)
|
216 |
+
def create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, negative_prompt=""):
|
217 |
+
pipe.to("cuda")
|
218 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
219 |
|
220 |
+
with Timer("Generating image"):
|
221 |
+
# Generate image
|
222 |
+
image = pipe(
|
223 |
+
prompt=prompt_mash,
|
224 |
+
negative_prompt=negative_prompt,
|
225 |
+
num_inference_steps=steps,
|
226 |
+
true_cfg_scale=cfg_scale, # Use true_cfg_scale for Qwen-Image
|
227 |
+
width=width,
|
228 |
+
height=height,
|
229 |
+
generator=generator,
|
230 |
+
).images[0]
|
231 |
+
|
232 |
+
return image
|
233 |
|
234 |
@spaces.GPU(duration=100)
|
235 |
+
def process_adapter_generation(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
236 |
if selected_index is None:
|
237 |
+
raise gr.Error("You must select a LoRA before proceeding.")
|
238 |
|
239 |
selected_lora = loras[selected_index]
|
240 |
lora_path = selected_lora["repo"]
|
|
|
242 |
|
243 |
# Prepare prompt with trigger word
|
244 |
if trigger_word:
|
245 |
+
if "trigger_position" in selected_lora:
|
246 |
+
if selected_lora["trigger_position"] == "prepend":
|
247 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
248 |
+
else:
|
249 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
250 |
+
else:
|
251 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
252 |
else:
|
253 |
prompt_mash = prompt
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
# Always unload any existing LoRAs first to avoid conflicts
|
256 |
with Timer("Unloading existing LoRAs"):
|
257 |
+
pipe.unload_lora_weights()
|
258 |
|
259 |
# Load LoRAs based on speed mode
|
260 |
if speed_mode == "Fast (8 steps)":
|
261 |
with Timer("Loading Lightning LoRA and style LoRA"):
|
262 |
+
# Load Lightning LoRA first
|
263 |
+
pipe.load_lora_weights(
|
264 |
LIGHTNING_LORA_REPO,
|
265 |
weight_name=LIGHTNING_LORA_WEIGHT,
|
266 |
adapter_name="lightning"
|
267 |
)
|
268 |
+
|
269 |
+
# Load the selected style LoRA
|
270 |
+
weight_name = selected_lora.get("weights", None)
|
271 |
+
pipe.load_lora_weights(
|
272 |
lora_path,
|
273 |
weight_name=weight_name,
|
274 |
+
low_cpu_mem_usage=True,
|
275 |
adapter_name="style"
|
276 |
)
|
277 |
+
|
278 |
+
# Set both adapters active with their weights
|
279 |
+
pipe.set_adapters(["lightning", "style"], adapter_weights=[1.0, lora_scale])
|
280 |
+
else:
|
281 |
+
# Quality mode - only load the style LoRA
|
282 |
with Timer(f"Loading LoRA weights for {selected_lora['title']}"):
|
283 |
+
weight_name = selected_lora.get("weights", None)
|
284 |
+
pipe.load_lora_weights(
|
285 |
+
lora_path,
|
286 |
+
weight_name=weight_name,
|
287 |
+
low_cpu_mem_usage=True
|
288 |
+
)
|
289 |
+
|
290 |
+
# Set random seed for reproducibility
|
291 |
+
with Timer("Randomizing seed"):
|
292 |
+
if randomize_seed:
|
293 |
+
seed = random.randint(0, MAX_SEED)
|
294 |
|
295 |
+
# Get image dimensions from aspect ratio
|
296 |
width, height = compute_image_dimensions(aspect_ratio)
|
297 |
+
|
298 |
+
# Generate the image
|
299 |
+
final_image = create_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
300 |
+
|
301 |
+
return final_image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
def fetch_hf_adapter_files(link):
|
304 |
split_link = link.split("/")
|
|
|
307 |
|
308 |
print(f"Repository attempted: {split_link}")
|
309 |
|
310 |
+
# Load model card
|
311 |
model_card = ModelCard.load(link)
|
312 |
base_model = model_card.data.get("base_model")
|
313 |
print(f"Base model: {base_model}")
|
314 |
|
315 |
+
# Validate model type (for Qwen-Image)
|
316 |
acceptable_models = {"Qwen/Qwen-Image"}
|
317 |
+
|
318 |
models_to_check = base_model if isinstance(base_model, list) else [base_model]
|
319 |
|
320 |
if not any(model in acceptable_models for model in models_to_check):
|
321 |
raise Exception("Not a Qwen-Image LoRA!")
|
322 |
|
323 |
+
# Extract image and trigger word
|
324 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
325 |
trigger_word = model_card.data.get("instance_prompt", "")
|
326 |
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
327 |
|
328 |
+
# Initialize Hugging Face file system
|
329 |
fs = HfFileSystem()
|
330 |
try:
|
331 |
list_of_files = fs.ls(link, detail=False)
|
332 |
+
|
333 |
+
# Find safetensors file
|
334 |
+
safetensors_name = None
|
335 |
+
for file in list_of_files:
|
336 |
+
filename = file.split("/")[-1]
|
337 |
+
if filename.endswith(".safetensors"):
|
338 |
+
safetensors_name = filename
|
339 |
+
break
|
340 |
+
|
341 |
if not safetensors_name:
|
342 |
raise Exception("No valid *.safetensors file found in the repository.")
|
343 |
+
|
344 |
except Exception as e:
|
345 |
print(e)
|
346 |
+
raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")
|
347 |
|
348 |
return split_link[1], link, safetensors_name, trigger_word, image_url
|
349 |
|
350 |
def validate_custom_adapter(link):
|
351 |
print(f"Checking a custom model on: {link}")
|
352 |
+
|
353 |
+
if link.endswith('.safetensors'):
|
354 |
+
if 'huggingface.co' in link:
|
355 |
+
parts = link.split('/')
|
356 |
+
try:
|
357 |
+
hf_index = parts.index('huggingface.co')
|
358 |
+
username = parts[hf_index + 1]
|
359 |
+
repo_name = parts[hf_index + 2]
|
360 |
+
repo = f"{username}/{repo_name}"
|
361 |
+
|
362 |
+
safetensors_name = parts[-1]
|
363 |
+
|
364 |
+
try:
|
365 |
+
model_card = ModelCard.load(repo)
|
366 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
367 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
368 |
+
image_url = f"https://huggingface.co/{repo}/resolve/main/{image_path}" if image_path else None
|
369 |
+
except:
|
370 |
+
trigger_word = ""
|
371 |
+
image_url = None
|
372 |
+
|
373 |
+
return repo_name, repo, safetensors_name, trigger_word, image_url
|
374 |
+
except:
|
375 |
+
raise Exception("Invalid safetensors URL format")
|
376 |
+
|
377 |
+
if link.startswith("https://"):
|
378 |
+
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
|
379 |
+
link_split = link.split("huggingface.co/")
|
380 |
+
return fetch_hf_adapter_files(link_split[1])
|
381 |
+
else:
|
382 |
+
return fetch_hf_adapter_files(link)
|
383 |
|
384 |
def incorporate_custom_adapter(custom_lora):
|
385 |
global loras
|
|
|
399 |
</div>
|
400 |
</div>
|
401 |
'''
|
402 |
+
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
403 |
if existing_item_index is None:
|
404 |
+
new_item = {
|
405 |
+
"image": image,
|
406 |
+
"title": title,
|
407 |
+
"repo": repo,
|
408 |
+
"weights": path,
|
409 |
+
"trigger_word": trigger_word
|
410 |
+
}
|
411 |
+
print(new_item)
|
412 |
loras.append(new_item)
|
413 |
+
existing_item_index = len(loras) - 1 # Get the actual index after adding
|
414 |
|
415 |
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
416 |
except Exception as e:
|
417 |
+
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-Qwen-Image LoRA, this was the issue: {e}")
|
418 |
+
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-Qwen-Image LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
419 |
+
else:
|
420 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
421 |
|
422 |
def discard_custom_adapter():
|
423 |
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
424 |
|
425 |
+
process_adapter_generation.zerogpu = True
|
426 |
|
427 |
css = '''
|
428 |
#gen_btn{height: 100%}
|
|
|
436 |
.card_internal img{margin-right: 1em}
|
437 |
.styler{--form-gap-width: 0px !important}
|
438 |
#speed_status{padding: .5em; border-radius: 5px; margin: 1em 0}
|
|
|
|
|
|
|
|
|
439 |
'''
|
440 |
|
441 |
with gr.Blocks(theme="bethecloud/storj_theme", css=css, delete_cache=(120, 120)) as app:
|
|
|
459 |
elem_id="gallery",
|
460 |
show_share_button=False
|
461 |
)
|
|
|
|
|
|
|
|
|
462 |
with gr.Group():
|
463 |
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/lora-model-name")
|
464 |
gr.Markdown("[Check Qwen-Image LoRAs](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image)", elem_id="lora_list")
|
|
|
467 |
|
468 |
with gr.Column():
|
469 |
result = gr.Image(label="Generated Image")
|
|
|
470 |
|
471 |
with gr.Row():
|
472 |
aspect_ratio = gr.Dropdown(
|
473 |
label="Aspect Ratio",
|
474 |
choices=["1:1", "16:9", "9:16", "4:3", "3:4", "3:2", "2:3"],
|
475 |
value="1:1"
|
476 |
+
)
|
477 |
with gr.Row():
|
478 |
speed_mode = gr.Dropdown(
|
479 |
label="Output Mode",
|
|
|
488 |
with gr.Column():
|
489 |
with gr.Row():
|
490 |
cfg_scale = gr.Slider(
|
491 |
+
label="Guidance Scale (True CFG)",
|
492 |
minimum=1.0,
|
493 |
maximum=5.0,
|
494 |
step=0.1,
|
495 |
value=4.0,
|
496 |
+
info="Lower for speed mode, higher for quality"
|
497 |
)
|
498 |
steps = gr.Slider(
|
499 |
label="Steps",
|
|
|
533 |
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
534 |
)
|
535 |
|
536 |
+
gr.on(
|
537 |
+
triggers=[generate_button.click, prompt.submit],
|
538 |
+
fn=process_adapter_generation,
|
539 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, aspect_ratio, lora_scale, speed_mode],
|
540 |
+
outputs=[result, seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
)
|
542 |
|
543 |
app.queue()
|