Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
import random | |
import uuid | |
from typing import Union, List, Optional | |
import numpy as np | |
import time | |
import zipfile | |
# Description for the app | |
DESCRIPTION = """## Qwen Image Generator""" | |
# Helper functions | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Load Qwen/Qwen-Image pipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device) | |
# Aspect ratios | |
aspect_ratios = { | |
"1:1": (1328, 1328), | |
"16:9": (1664, 928), | |
"9:16": (928, 1664), | |
"4:3": (1472, 1140), | |
"3:4": (1140, 1472) | |
} | |
# Generation function for Qwen/Qwen-Image | |
def generate_qwen( | |
prompt: str, | |
negative_prompt: str = "", | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 4.0, | |
randomize_seed: bool = False, | |
num_inference_steps: int = 50, | |
num_images: int = 1, | |
zip_images: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device).manual_seed(seed) | |
start_time = time.time() | |
images = pipe_qwen( | |
prompt=prompt, | |
negative_prompt=negative_prompt if negative_prompt else None, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images, | |
generator=generator, | |
output_type="pil", | |
).images | |
end_time = time.time() | |
duration = end_time - start_time | |
image_paths = [save_image(img) for img in images] | |
zip_path = None | |
if zip_images: | |
zip_name = str(uuid.uuid4()) + ".zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for i, img_path in enumerate(image_paths): | |
zipf.write(img_path, arcname=f"Img_{i}.png") | |
zip_path = zip_name | |
return image_paths, seed, f"{duration:.2f}", zip_path | |
# Wrapper function to handle UI logic | |
def generate( | |
prompt: str, | |
negative_prompt: str, | |
use_negative_prompt: bool, | |
seed: int, | |
width: int, | |
height: int, | |
guidance_scale: float, | |
randomize_seed: bool, | |
num_inference_steps: int, | |
num_images: int, | |
zip_images: bool, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
final_negative_prompt = negative_prompt if use_negative_prompt else "" | |
return generate_qwen( | |
prompt=prompt, | |
negative_prompt=final_negative_prompt, | |
seed=seed, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
randomize_seed=randomize_seed, | |
num_inference_steps=num_inference_steps, | |
num_images=num_images, | |
zip_images=zip_images, | |
progress=progress, | |
) | |
# Examples | |
examples = [ | |
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it", | |
"Headshot of handsome young man, wearing dark gray sweater, brown hair and short beard, serious look, black background, soft studio lighting", | |
"A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights", | |
"High-resolution photograph of a woman, photorealistic, vibrant colors" | |
] | |
css = ''' | |
.gradio-container { | |
max-width: 590px !important; | |
margin: 0 auto !important; | |
} | |
h1 { | |
text-align: center; | |
} | |
footer { | |
visibility: hidden; | |
} | |
''' | |
# Gradio interface | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True) | |
with gr.Accordion("Additional Options", open=False): | |
aspect_ratio = gr.Dropdown( | |
label="Aspect Ratio", | |
choices=list(aspect_ratios.keys()), | |
value="1:1", | |
) | |
use_negative_prompt = gr.Checkbox( | |
label="Use negative prompt", | |
value=False, | |
visible=True | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=64, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=64, | |
value=1024, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=20.0, | |
step=0.1, | |
value=4.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
num_images = gr.Slider( | |
label="Number of images", | |
minimum=1, | |
maximum=5, | |
step=1, | |
value=1, | |
) | |
zip_images = gr.Checkbox(label="Zip generated images", value=False) | |
gr.Markdown("### Output Information") | |
seed_display = gr.Textbox(label="Seed used", interactive=False) | |
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False) | |
zip_file = gr.File(label="Download ZIP") | |
# Update aspect ratio | |
def set_dimensions(ar): | |
w, h = aspect_ratios[ar] | |
return gr.update(value=w), gr.update(value=h) | |
aspect_ratio.change( | |
fn=set_dimensions, | |
inputs=aspect_ratio, | |
outputs=[width, height] | |
) | |
# Negative prompt visibility | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt | |
) | |
# Run button and prompt submit | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
num_inference_steps, | |
num_images, | |
zip_images, | |
], | |
outputs=[result, seed_display, generation_time, zip_file], | |
api_name="run", | |
) | |
# Examples | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed_display, generation_time, zip_file], | |
fn=generate, | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True) |