prithivMLmods's picture
Update app.py
ce4c1b6 verified
raw
history blame
7.71 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Union, List, Optional
import numpy as np
import time
import zipfile
# Description for the app
DESCRIPTION = """## Qwen Image Generator"""
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load Qwen/Qwen-Image pipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
# Aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472)
}
# Generation function for Qwen/Qwen-Image
@spaces.GPU
def generate_qwen(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.0,
randomize_seed: bool = False,
num_inference_steps: int = 50,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
start_time = time.time()
images = pipe_qwen(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Wrapper function to handle UI logic
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str,
use_negative_prompt: bool,
seed: int,
width: int,
height: int,
guidance_scale: float,
randomize_seed: bool,
num_inference_steps: int,
num_images: int,
zip_images: bool,
progress=gr.Progress(track_tqdm=True),
):
final_negative_prompt = negative_prompt if use_negative_prompt else ""
return generate_qwen(
prompt=prompt,
negative_prompt=final_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
# Examples
examples = [
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
"Headshot of handsome young man, wearing dark gray sweater, brown hair and short beard, serious look, black background, soft studio lighting",
"A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights",
"High-resolution photograph of a woman, photorealistic, vibrant colors"
]
css = '''
.gradio-container {
max-width: 590px !important;
margin: 0 auto !important;
}
h1 {
text-align: center;
}
footer {
visibility: hidden;
}
'''
# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
with gr.Accordion("Additional Options", open=False):
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=list(aspect_ratios.keys()),
value="1:1",
)
use_negative_prompt = gr.Checkbox(
label="Use negative prompt",
value=False,
visible=True
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=5,
step=1,
value=1,
)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
gr.Markdown("### Output Information")
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
# Update aspect ratio
def set_dimensions(ar):
w, h = aspect_ratios[ar]
return gr.update(value=w), gr.update(value=h)
aspect_ratio.change(
fn=set_dimensions,
inputs=aspect_ratio,
outputs=[width, height]
)
# Negative prompt visibility
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt
)
# Run button and prompt submit
gr.on(
triggers=[prompt.submit, run_button.click],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
num_inference_steps,
num_images,
zip_images,
],
outputs=[result, seed_display, generation_time, zip_file],
api_name="run",
)
# Examples
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed_display, generation_time, zip_file],
fn=generate,
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)