File size: 7,709 Bytes
1f5fa16
 
 
 
ce4c1b6
1f5fa16
 
ce4c1b6
1f5fa16
 
 
 
 
ce4c1b6
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4c1b6
1f5fa16
 
ce4c1b6
1f5fa16
5439aa4
 
 
 
 
 
 
 
1f5fa16
5439aa4
1f5fa16
5439aa4
1f5fa16
5439aa4
1f5fa16
 
 
5439aa4
1f5fa16
5439aa4
1f5fa16
 
 
 
 
 
5439aa4
1f5fa16
 
 
5439aa4
 
 
 
 
 
 
 
 
 
 
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4c1b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
1f5fa16
5439aa4
 
 
 
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
 
 
 
 
 
190a279
5439aa4
ce4c1b6
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
1f5fa16
 
190a279
1f5fa16
 
 
 
5439aa4
1f5fa16
190a279
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
 
 
 
 
 
 
 
 
1f5fa16
 
5439aa4
1f5fa16
 
 
5439aa4
1f5fa16
 
5439aa4
1f5fa16
5439aa4
ce4c1b6
1f5fa16
 
 
ce4c1b6
1f5fa16
 
 
 
 
 
 
 
 
 
 
 
 
5439aa4
 
 
 
 
ce4c1b6
5439aa4
 
 
1f5fa16
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Union, List, Optional
import numpy as np
import time
import zipfile

# Description for the app
DESCRIPTION = """## Qwen Image Generator"""

# Helper functions
def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Load Qwen/Qwen-Image pipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)

# Aspect ratios
aspect_ratios = {
    "1:1": (1328, 1328),
    "16:9": (1664, 928),
    "9:16": (928, 1664),
    "4:3": (1472, 1140),
    "3:4": (1140, 1472)
}

# Generation function for Qwen/Qwen-Image
@spaces.GPU
def generate_qwen(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 4.0,
    randomize_seed: bool = False,
    num_inference_steps: int = 50,
    num_images: int = 1,
    zip_images: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device).manual_seed(seed)
    
    start_time = time.time()
    
    images = pipe_qwen(
        prompt=prompt,
        negative_prompt=negative_prompt if negative_prompt else None,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images,
        generator=generator,
        output_type="pil",
    ).images
    
    end_time = time.time()
    duration = end_time - start_time
    
    image_paths = [save_image(img) for img in images]
    
    zip_path = None
    if zip_images:
        zip_name = str(uuid.uuid4()) + ".zip"
        with zipfile.ZipFile(zip_name, 'w') as zipf:
            for i, img_path in enumerate(image_paths):
                zipf.write(img_path, arcname=f"Img_{i}.png")
        zip_path = zip_name
    
    return image_paths, seed, f"{duration:.2f}", zip_path

# Wrapper function to handle UI logic
@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str,
    use_negative_prompt: bool,
    seed: int,
    width: int,
    height: int,
    guidance_scale: float,
    randomize_seed: bool,
    num_inference_steps: int,
    num_images: int,
    zip_images: bool,
    progress=gr.Progress(track_tqdm=True),
):
    final_negative_prompt = negative_prompt if use_negative_prompt else ""
    return generate_qwen(
        prompt=prompt,
        negative_prompt=final_negative_prompt,
        seed=seed,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        randomize_seed=randomize_seed,
        num_inference_steps=num_inference_steps,
        num_images=num_images,
        zip_images=zip_images,
        progress=progress,
    )

# Examples
examples = [
    "An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
    "Headshot of handsome young man, wearing dark gray sweater, brown hair and short beard, serious look, black background, soft studio lighting",
    "A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights",
    "High-resolution photograph of a woman, photorealistic, vibrant colors"
]

css = '''
.gradio-container {
    max-width: 590px !important;
    margin: 0 auto !important;
}
h1 {
    text-align: center;
}
footer {
    visibility: hidden;
}
'''

# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        prompt = gr.Text(
            label="Prompt",
            show_label=False,
            max_lines=1,
            placeholder="Enter your prompt",
            container=False,
        )
        run_button = gr.Button("Run", scale=0, variant="primary")
    result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
    
    with gr.Accordion("Additional Options", open=False):
        aspect_ratio = gr.Dropdown(
            label="Aspect Ratio",
            choices=list(aspect_ratios.keys()),
            value="1:1",
        )
        use_negative_prompt = gr.Checkbox(
            label="Use negative prompt",
            value=False,
            visible=True
        )
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=64,
                value=1024,
            )
        guidance_scale = gr.Slider(
            label="Guidance Scale",
            minimum=0.0,
            maximum=20.0,
            step=0.1,
            value=4.0,
        )
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=100,
            step=1,
            value=50,
        )
        num_images = gr.Slider(
            label="Number of images",
            minimum=1,
            maximum=5,
            step=1,
            value=1,
        )
        zip_images = gr.Checkbox(label="Zip generated images", value=False)
        
        gr.Markdown("### Output Information")
        seed_display = gr.Textbox(label="Seed used", interactive=False)
        generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
        zip_file = gr.File(label="Download ZIP")

    # Update aspect ratio
    def set_dimensions(ar):
        w, h = aspect_ratios[ar]
        return gr.update(value=w), gr.update(value=h)
    
    aspect_ratio.change(
        fn=set_dimensions,
        inputs=aspect_ratio,
        outputs=[width, height]
    )

    # Negative prompt visibility
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt
    )

    # Run button and prompt submit
    gr.on(
        triggers=[prompt.submit, run_button.click],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            num_inference_steps,
            num_images,
            zip_images,
        ],
        outputs=[result, seed_display, generation_time, zip_file],
        api_name="run",
    )

    # Examples
    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed_display, generation_time, zip_file],
        fn=generate,
        cache_examples=False,
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True)