Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,17 +2,16 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny
|
6 |
import random
|
7 |
import uuid
|
8 |
from typing import Tuple, Union, List, Optional, Any, Dict
|
9 |
import numpy as np
|
10 |
import time
|
11 |
import zipfile
|
12 |
-
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
13 |
|
14 |
# Description for the app
|
15 |
-
DESCRIPTION = """##
|
16 |
|
17 |
# Helper functions
|
18 |
def save_image(img):
|
@@ -28,175 +27,11 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
29 |
MAX_IMAGE_SIZE = 2048
|
30 |
|
31 |
-
# Load
|
32 |
dtype = torch.bfloat16
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
-
|
35 |
-
# Flux.1-krea pipeline
|
36 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
37 |
-
|
38 |
-
pipe_krea = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-Krea-dev", torch_dtype=dtype, vae=taef1).to(device)
|
39 |
-
|
40 |
-
# Qwen/Qwen-Image pipeline
|
41 |
-
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
|
42 |
-
|
43 |
-
# Define custom flux_pipe_call for Flux.1-krea
|
44 |
-
@torch.inference_mode()
|
45 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
46 |
-
self,
|
47 |
-
prompt: Union[str, List[str]] = None,
|
48 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
49 |
-
height: Optional[int] = None,
|
50 |
-
width: Optional[int] = None,
|
51 |
-
num_inference_steps: int = 28,
|
52 |
-
timesteps: List[int] = None,
|
53 |
-
guidance_scale: float = 3.5,
|
54 |
-
num_images_per_prompt: Optional[int] = 1,
|
55 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
56 |
-
latents: Optional[torch.FloatTensor] = None,
|
57 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
58 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
59 |
-
output_type: Optional[str] = "pil",
|
60 |
-
return_dict: bool = True,
|
61 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
62 |
-
max_sequence_length: int = 512,
|
63 |
-
good_vae: Optional[Any] = None,
|
64 |
-
):
|
65 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
66 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
67 |
-
|
68 |
-
self.check_inputs(
|
69 |
-
prompt,
|
70 |
-
prompt_2,
|
71 |
-
height,
|
72 |
-
width,
|
73 |
-
prompt_embeds=prompt_embeds,
|
74 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
75 |
-
max_sequence_length=max_sequence_length,
|
76 |
-
)
|
77 |
-
|
78 |
-
self._guidance_scale = guidance_scale
|
79 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
80 |
-
self._interrupt = False
|
81 |
-
|
82 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
83 |
-
device = self._execution_device
|
84 |
-
|
85 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
86 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
87 |
-
prompt=prompt,
|
88 |
-
prompt_2=prompt_2,
|
89 |
-
prompt_embeds=prompt_embeds,
|
90 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
91 |
-
device=device,
|
92 |
-
num_images_per_prompt=num_images_per_prompt,
|
93 |
-
max_sequence_length=max_sequence_length,
|
94 |
-
lora_scale=lora_scale,
|
95 |
-
)
|
96 |
-
|
97 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
98 |
-
latents, latent_image_ids = self.prepare_latents(
|
99 |
-
batch_size * num_images_per_prompt,
|
100 |
-
num_channels_latents,
|
101 |
-
height,
|
102 |
-
width,
|
103 |
-
prompt_embeds.dtype,
|
104 |
-
device,
|
105 |
-
generator,
|
106 |
-
latents,
|
107 |
-
)
|
108 |
-
|
109 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
110 |
-
image_seq_len = latents.shape[1]
|
111 |
-
mu = calculate_shift(
|
112 |
-
image_seq_len,
|
113 |
-
self.scheduler.config.base_image_seq_len,
|
114 |
-
self.scheduler.config.max_image_seq_len,
|
115 |
-
self.scheduler.config.base_shift,
|
116 |
-
self.scheduler.config.max_shift,
|
117 |
-
)
|
118 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
119 |
-
self.scheduler,
|
120 |
-
num_inference_steps,
|
121 |
-
device,
|
122 |
-
timesteps,
|
123 |
-
sigmas,
|
124 |
-
mu=mu,
|
125 |
-
)
|
126 |
-
self._num_timesteps = len(timesteps)
|
127 |
-
|
128 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
129 |
-
|
130 |
-
for i, t in enumerate(timesteps):
|
131 |
-
if self.interrupt:
|
132 |
-
continue
|
133 |
-
|
134 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
135 |
-
|
136 |
-
noise_pred = self.transformer(
|
137 |
-
hidden_states=latents,
|
138 |
-
timestep=timestep / 1000,
|
139 |
-
guidance=guidance,
|
140 |
-
pooled_projections=pooled_prompt_embeds,
|
141 |
-
encoder_hidden_states=prompt_embeds,
|
142 |
-
txt_ids=text_ids,
|
143 |
-
img_ids=latent_image_ids,
|
144 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
145 |
-
return_dict=False,
|
146 |
-
)[0]
|
147 |
-
|
148 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
149 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
150 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
151 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
152 |
-
|
153 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
154 |
-
torch.cuda.empty_cache()
|
155 |
-
|
156 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
157 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
158 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
159 |
-
self.maybe_free_model_hooks()
|
160 |
-
torch.cuda.empty_cache()
|
161 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
162 |
-
|
163 |
-
pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe_krea)
|
164 |
-
|
165 |
-
# Helper functions for Flux.1-krea
|
166 |
-
def calculate_shift(
|
167 |
-
image_seq_len,
|
168 |
-
base_seq_len: int = 256,
|
169 |
-
max_seq_len: int = 4096,
|
170 |
-
base_shift: float = 0.5,
|
171 |
-
max_shift: float = 1.16,
|
172 |
-
):
|
173 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
174 |
-
b = base_shift - m * base_seq_len
|
175 |
-
mu = image_seq_len * m + b
|
176 |
-
return mu
|
177 |
-
|
178 |
-
def retrieve_timesteps(
|
179 |
-
scheduler,
|
180 |
-
num_inference_steps: Optional[int] = None,
|
181 |
-
device: Optional[Union[str, torch.device]] = None,
|
182 |
-
timesteps: Optional[List[int]] = None,
|
183 |
-
sigmas: Optional[List[float]] = None,
|
184 |
-
**kwargs,
|
185 |
-
):
|
186 |
-
if timesteps is not None and sigmas is not None:
|
187 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
|
188 |
-
if timesteps is not None:
|
189 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
190 |
-
timesteps = scheduler.timesteps
|
191 |
-
num_inference_steps = len(timesteps)
|
192 |
-
elif sigmas is not None:
|
193 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
194 |
-
timesteps = scheduler.timesteps
|
195 |
-
num_inference_steps = len(timesteps)
|
196 |
-
else:
|
197 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
198 |
-
timesteps = scheduler.timesteps
|
199 |
-
return timesteps, num_inference_steps
|
200 |
|
201 |
# Aspect ratios
|
202 |
aspect_ratios = {
|
@@ -207,55 +42,6 @@ aspect_ratios = {
|
|
207 |
"3:4": (1140, 1472)
|
208 |
}
|
209 |
|
210 |
-
# Generation function for Flux.1-krea
|
211 |
-
@spaces.GPU
|
212 |
-
def generate_krea(
|
213 |
-
prompt: str,
|
214 |
-
seed: int = 0,
|
215 |
-
width: int = 1024,
|
216 |
-
height: int = 1024,
|
217 |
-
guidance_scale: float = 4.5,
|
218 |
-
randomize_seed: bool = False,
|
219 |
-
num_inference_steps: int = 28,
|
220 |
-
num_images: int = 1,
|
221 |
-
zip_images: bool = False,
|
222 |
-
progress=gr.Progress(track_tqdm=True),
|
223 |
-
):
|
224 |
-
if randomize_seed:
|
225 |
-
seed = random.randint(0, MAX_SEED)
|
226 |
-
generator = torch.Generator(device).manual_seed(seed)
|
227 |
-
|
228 |
-
start_time = time.time()
|
229 |
-
|
230 |
-
images = []
|
231 |
-
for _ in range(num_images):
|
232 |
-
final_img = list(pipe_krea.flux_pipe_call_that_returns_an_iterable_of_images(
|
233 |
-
prompt=prompt,
|
234 |
-
guidance_scale=guidance_scale,
|
235 |
-
num_inference_steps=num_inference_steps,
|
236 |
-
width=width,
|
237 |
-
height=height,
|
238 |
-
generator=generator,
|
239 |
-
output_type="pil",
|
240 |
-
good_vae=good_vae,
|
241 |
-
))[-1] # Take the final image only
|
242 |
-
images.append(final_img)
|
243 |
-
|
244 |
-
end_time = time.time()
|
245 |
-
duration = end_time - start_time
|
246 |
-
|
247 |
-
image_paths = [save_image(img) for img in images]
|
248 |
-
|
249 |
-
zip_path = None
|
250 |
-
if zip_images:
|
251 |
-
zip_name = str(uuid.uuid4()) + ".zip"
|
252 |
-
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
253 |
-
for i, img_path in enumerate(image_paths):
|
254 |
-
zipf.write(img_path, arcname=f"Img_{i}.png")
|
255 |
-
zip_path = zip_name
|
256 |
-
|
257 |
-
return image_paths, seed, f"{duration:.2f}", zip_path
|
258 |
-
|
259 |
# Generation function for Qwen/Qwen-Image
|
260 |
@spaces.GPU
|
261 |
def generate_qwen(
|
@@ -304,54 +90,6 @@ def generate_qwen(
|
|
304 |
|
305 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
306 |
|
307 |
-
# Main generation function
|
308 |
-
@spaces.GPU
|
309 |
-
def generate(
|
310 |
-
model_choice: str,
|
311 |
-
prompt: str,
|
312 |
-
negative_prompt: str = "",
|
313 |
-
use_negative_prompt: bool = False,
|
314 |
-
seed: int = 0,
|
315 |
-
width: int = 1024,
|
316 |
-
height: int = 1024,
|
317 |
-
guidance_scale: float = 3.5,
|
318 |
-
randomize_seed: bool = False,
|
319 |
-
num_inference_steps: int = 28,
|
320 |
-
num_images: int = 1,
|
321 |
-
zip_images: bool = False,
|
322 |
-
progress=gr.Progress(track_tqdm=True),
|
323 |
-
):
|
324 |
-
if model_choice == "Flux.1-krea":
|
325 |
-
return generate_krea(
|
326 |
-
prompt=prompt,
|
327 |
-
seed=seed,
|
328 |
-
width=width,
|
329 |
-
height=height,
|
330 |
-
guidance_scale=guidance_scale,
|
331 |
-
randomize_seed=randomize_seed,
|
332 |
-
num_inference_steps=num_inference_steps,
|
333 |
-
num_images=num_images,
|
334 |
-
zip_images=zip_images,
|
335 |
-
progress=progress,
|
336 |
-
)
|
337 |
-
elif model_choice == "Qwen Image":
|
338 |
-
final_negative_prompt = negative_prompt if use_negative_prompt else ""
|
339 |
-
return generate_qwen(
|
340 |
-
prompt=prompt,
|
341 |
-
negative_prompt=final_negative_prompt,
|
342 |
-
seed=seed,
|
343 |
-
width=width,
|
344 |
-
height=height,
|
345 |
-
guidance_scale=guidance_scale,
|
346 |
-
randomize_seed=randomize_seed,
|
347 |
-
num_inference_steps=num_inference_steps,
|
348 |
-
num_images=num_images,
|
349 |
-
zip_images=zip_images,
|
350 |
-
progress=progress,
|
351 |
-
)
|
352 |
-
else:
|
353 |
-
raise ValueError("Invalid model choice")
|
354 |
-
|
355 |
# Examples
|
356 |
examples = [
|
357 |
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
|
@@ -387,13 +125,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
387 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
388 |
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
389 |
|
390 |
-
with gr.Row():
|
391 |
-
model_choice = gr.Radio(
|
392 |
-
choices=["Flux.1-krea", "Qwen Image"],
|
393 |
-
label="Select Model",
|
394 |
-
value="Flux.1-krea"
|
395 |
-
)
|
396 |
-
|
397 |
with gr.Accordion("Additional Options", open=False):
|
398 |
aspect_ratio = gr.Dropdown(
|
399 |
label="Aspect Ratio",
|
@@ -401,9 +132,8 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
401 |
value="1:1",
|
402 |
)
|
403 |
use_negative_prompt = gr.Checkbox(
|
404 |
-
label="Use negative prompt
|
405 |
value=False,
|
406 |
-
visible=False
|
407 |
)
|
408 |
negative_prompt = gr.Text(
|
409 |
label="Negative prompt",
|
@@ -439,14 +169,14 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
439 |
minimum=0.0,
|
440 |
maximum=20.0,
|
441 |
step=0.1,
|
442 |
-
value=
|
443 |
)
|
444 |
num_inference_steps = gr.Slider(
|
445 |
label="Number of inference steps",
|
446 |
minimum=1,
|
447 |
maximum=100,
|
448 |
step=1,
|
449 |
-
value=
|
450 |
)
|
451 |
num_images = gr.Slider(
|
452 |
label="Number of images",
|
@@ -473,27 +203,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
473 |
outputs=[width, height]
|
474 |
)
|
475 |
|
476 |
-
# Update model-specific settings
|
477 |
-
def update_settings(mc):
|
478 |
-
if mc == "Flux.1-krea":
|
479 |
-
return (
|
480 |
-
gr.update(value=28),
|
481 |
-
gr.update(value=3.5),
|
482 |
-
gr.update(visible=False)
|
483 |
-
)
|
484 |
-
elif mc == "Qwen Image":
|
485 |
-
return (
|
486 |
-
gr.update(value=50),
|
487 |
-
gr.update(value=4.0),
|
488 |
-
gr.update(visible=True)
|
489 |
-
)
|
490 |
-
|
491 |
-
model_choice.change(
|
492 |
-
fn=update_settings,
|
493 |
-
inputs=model_choice,
|
494 |
-
outputs=[num_inference_steps, guidance_scale, use_negative_prompt]
|
495 |
-
)
|
496 |
-
|
497 |
# Negative prompt visibility
|
498 |
use_negative_prompt.change(
|
499 |
fn=lambda x: gr.update(visible=x),
|
@@ -504,12 +213,10 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
504 |
# Run button and prompt submit
|
505 |
gr.on(
|
506 |
triggers=[prompt.submit, run_button.click],
|
507 |
-
fn=
|
508 |
inputs=[
|
509 |
-
model_choice,
|
510 |
prompt,
|
511 |
negative_prompt,
|
512 |
-
use_negative_prompt,
|
513 |
seed,
|
514 |
width,
|
515 |
height,
|
@@ -528,7 +235,7 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
528 |
examples=examples,
|
529 |
inputs=prompt,
|
530 |
outputs=[result, seed_display, generation_time, zip_file],
|
531 |
-
fn=
|
532 |
cache_examples=False,
|
533 |
)
|
534 |
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny
|
6 |
import random
|
7 |
import uuid
|
8 |
from typing import Tuple, Union, List, Optional, Any, Dict
|
9 |
import numpy as np
|
10 |
import time
|
11 |
import zipfile
|
|
|
12 |
|
13 |
# Description for the app
|
14 |
+
DESCRIPTION = """## Qwen Image Hpc/."""
|
15 |
|
16 |
# Helper functions
|
17 |
def save_image(img):
|
|
|
27 |
MAX_SEED = np.iinfo(np.int32).max
|
28 |
MAX_IMAGE_SIZE = 2048
|
29 |
|
30 |
+
# Load Qwen/Qwen-Image pipeline with taef1 VAE
|
31 |
dtype = torch.bfloat16
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
33 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
34 |
+
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype, vae=taef1).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# Aspect ratios
|
37 |
aspect_ratios = {
|
|
|
42 |
"3:4": (1140, 1472)
|
43 |
}
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Generation function for Qwen/Qwen-Image
|
46 |
@spaces.GPU
|
47 |
def generate_qwen(
|
|
|
90 |
|
91 |
return image_paths, seed, f"{duration:.2f}", zip_path
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
# Examples
|
94 |
examples = [
|
95 |
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
|
|
|
125 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
126 |
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
with gr.Accordion("Additional Options", open=False):
|
129 |
aspect_ratio = gr.Dropdown(
|
130 |
label="Aspect Ratio",
|
|
|
132 |
value="1:1",
|
133 |
)
|
134 |
use_negative_prompt = gr.Checkbox(
|
135 |
+
label="Use negative prompt",
|
136 |
value=False,
|
|
|
137 |
)
|
138 |
negative_prompt = gr.Text(
|
139 |
label="Negative prompt",
|
|
|
169 |
minimum=0.0,
|
170 |
maximum=20.0,
|
171 |
step=0.1,
|
172 |
+
value=4.0,
|
173 |
)
|
174 |
num_inference_steps = gr.Slider(
|
175 |
label="Number of inference steps",
|
176 |
minimum=1,
|
177 |
maximum=100,
|
178 |
step=1,
|
179 |
+
value=50,
|
180 |
)
|
181 |
num_images = gr.Slider(
|
182 |
label="Number of images",
|
|
|
203 |
outputs=[width, height]
|
204 |
)
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
# Negative prompt visibility
|
207 |
use_negative_prompt.change(
|
208 |
fn=lambda x: gr.update(visible=x),
|
|
|
213 |
# Run button and prompt submit
|
214 |
gr.on(
|
215 |
triggers=[prompt.submit, run_button.click],
|
216 |
+
fn=generate_qwen,
|
217 |
inputs=[
|
|
|
218 |
prompt,
|
219 |
negative_prompt,
|
|
|
220 |
seed,
|
221 |
width,
|
222 |
height,
|
|
|
235 |
examples=examples,
|
236 |
inputs=prompt,
|
237 |
outputs=[result, seed_display, generation_time, zip_file],
|
238 |
+
fn=generate_qwen,
|
239 |
cache_examples=False,
|
240 |
)
|
241 |
|