Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,180 Bytes
1f5fa16 ce4c1b6 1f5fa16 ce4c1b6 1f5fa16 caf27e7 1f5fa16 ce4c1b6 1f5fa16 ce4c1b6 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 ce4c1b6 5439aa4 1f5fa16 5439aa4 ff136c9 5439aa4 caf27e7 1f5fa16 ff136c9 5439aa4 ff136c9 5439aa4 190a279 5439aa4 ce4c1b6 1f5fa16 5439aa4 1f5fa16 190a279 1f5fa16 5439aa4 1f5fa16 190a279 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 1f5fa16 5439aa4 ce4c1b6 1f5fa16 ce4c1b6 1f5fa16 5439aa4 ce4c1b6 5439aa4 1f5fa16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Union, List, Optional
import numpy as np
import time
import zipfile
# Description for the app
DESCRIPTION = """## Qwen Image Hpc/."""
# Helper functions
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load Qwen/Qwen-Image pipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe_qwen = DiffusionPipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
# Aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472)
}
# Generation function for Qwen/Qwen-Image
@spaces.GPU
def generate_qwen(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 4.0,
randomize_seed: bool = False,
num_inference_steps: int = 50,
num_images: int = 1,
zip_images: bool = False,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device).manual_seed(seed)
start_time = time.time()
images = pipe_qwen(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
generator=generator,
output_type="pil",
).images
end_time = time.time()
duration = end_time - start_time
image_paths = [save_image(img) for img in images]
zip_path = None
if zip_images:
zip_name = str(uuid.uuid4()) + ".zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, img_path in enumerate(image_paths):
zipf.write(img_path, arcname=f"Img_{i}.png")
zip_path = zip_name
return image_paths, seed, f"{duration:.2f}", zip_path
# Wrapper function to handle UI logic
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str,
use_negative_prompt: bool,
seed: int,
width: int,
height: int,
guidance_scale: float,
randomize_seed: bool,
num_inference_steps: int,
num_images: int,
zip_images: bool,
progress=gr.Progress(track_tqdm=True),
):
final_negative_prompt = negative_prompt if use_negative_prompt else ""
return generate_qwen(
prompt=prompt,
negative_prompt=final_negative_prompt,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
randomize_seed=randomize_seed,
num_inference_steps=num_inference_steps,
num_images=num_images,
zip_images=zip_images,
progress=progress,
)
# Examples
examples = [
"An attractive young woman with blue eyes lying face down on the bed, light white and light amber, timeless beauty, sunrays shine upon it",
"一幅精致细腻的工笔画,画面中心是一株蓬勃生长的红色牡丹,花朵繁茂,既有盛开的硕大花瓣,也有含苞待放的花蕾,层次丰富,色彩艳丽而不失典雅。牡丹枝叶舒展,叶片浓绿饱满,脉络清晰可见,与红花相映成趣。一只蓝紫色蝴蝶仿佛被画中花朵吸引,停驻在画面中央的一朵盛开牡丹上,流连忘返,蝶翼轻展,细节逼真,仿佛随时会随风飞舞。整幅画作笔触工整严谨,色彩浓郁鲜明,展现出中国传统工笔画的精妙与神韵,画面充满生机与灵动之感。",
"A medium-angle shot of a young woman with long brown hair, wearing glasses, standing in front of purple and white lights",
"A capybara wearing a suit holding a sign that reads Hello World"
]
css = '''
.gradio-container {
max-width: 590px !important;
margin: 0 auto !important;
}
h1 {
text-align: center;
}
footer {
visibility: hidden;
}
'''
# Gradio interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Gallery(label="Result", columns=1, show_label=False, preview=True)
with gr.Row():
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=list(aspect_ratios.keys()),
value="1:1",
)
with gr.Accordion("Additional Options", open=False):
use_negative_prompt = gr.Checkbox(
label="Use negative prompt",
value=False,
visible=True
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=50,
)
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=5,
step=1,
value=1,
)
zip_images = gr.Checkbox(label="Zip generated images", value=False)
gr.Markdown("### Output Information")
seed_display = gr.Textbox(label="Seed used", interactive=False)
generation_time = gr.Textbox(label="Generation time (seconds)", interactive=False)
zip_file = gr.File(label="Download ZIP")
# Update aspect ratio
def set_dimensions(ar):
w, h = aspect_ratios[ar]
return gr.update(value=w), gr.update(value=h)
aspect_ratio.change(
fn=set_dimensions,
inputs=aspect_ratio,
outputs=[width, height]
)
# Negative prompt visibility
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt
)
# Run button and prompt submit
gr.on(
triggers=[prompt.submit, run_button.click],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
num_inference_steps,
num_images,
zip_images,
],
outputs=[result, seed_display, generation_time, zip_file],
api_name="run",
)
# Examples
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed_display, generation_time, zip_file],
fn=generate,
cache_examples=False,
)
if __name__ == "__main__":
demo.queue(max_size=30).launch(mcp_server=True, ssr_mode=False, show_error=True) |