File size: 3,569 Bytes
6583df1
0f2e032
ccba23e
20ef3fc
6583df1
ccba23e
 
6583df1
ccba23e
 
39d517d
ccba23e
2f83709
ccba23e
 
2f83709
ccba23e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f83709
ccba23e
 
 
 
2f83709
 
6583df1
ccba23e
0f2e032
ccba23e
0f2e032
ccba23e
0ed0cc1
ccba23e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a783606
ccba23e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f2e032
ccba23e
 
 
 
 
 
 
0f2e032
ccba23e
 
 
0f2e032
2f83709
0f2e032
ccba23e
0f2e032
ccba23e
2f83709
ccba23e
 
 
 
 
 
 
 
0f2e032
 
 
ccba23e
 
 
0f2e032
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-krea-Merge-Transformer", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        prompt = prompt, 
        width = width,
        height = height,
        num_inference_steps = num_inference_steps, 
        generator = generator,
        guidance_scale=guidance_scale
    ).images[0] 
    return image, seed
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        num_inference_steps = gr.Slider(
            label="Number of inference steps",
            minimum=1,
            maximum=50,
            step=1,
            value=8,
        )
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()