prithivMLmods commited on
Commit
ccba23e
·
verified ·
1 Parent(s): 20ef3fc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -257
app.py CHANGED
@@ -1,286 +1,125 @@
1
  import gradio as gr
2
  import numpy as np
 
3
  import spaces
4
  import torch
5
- import random
6
- import json
7
- import os
8
- from PIL import Image
9
- from diffusers import FluxKontextPipeline
10
- from diffusers.utils import load_image
11
- from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
12
- from safetensors.torch import load_file
13
- import requests
14
- import re
15
-
16
- # Load Kontext model from your local path
17
- MAX_SEED = np.iinfo(np.int32).max
18
 
19
- # Use the local path for the base model as in your test.py
20
- pipe = FluxKontextPipeline.from_pretrained(
21
- "black-forest-labs/FLUX.1-Kontext-dev",
22
- torch_dtype=torch.bfloat16
23
- ).to("cuda")
24
-
25
- # Load LoRA data from our custom JSON file
26
- with open("kontext_loras.json", "r") as file:
27
- data = json.load(file)
28
- # Add default values for keys that might be missing, to prevent errors
29
- flux_loras_raw = [
30
- {
31
- "image": item["image"],
32
- "title": item["title"],
33
- "repo": item["repo"],
34
- "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
35
- "prompt": item.get("prompt", f"Turn this image into {item['title']} style."),
36
- # The following keys are kept for compatibility with the original demo structure,
37
- # but our simplified logic doesn't heavily rely on them.
38
- "lora_type": item.get("lora_type", "flux"),
39
- "lora_scale_config": item.get("lora_scale", 1.0), # Default scale set to 1.0
40
- "prompt_placeholder": item.get("prompt_placeholder", "You can edit the prompt here..."),
41
- }
42
- for item in data
43
- ]
44
- print(f"Loaded {len(flux_loras_raw)} LoRAs from kontext_loras.json")
45
-
46
- def update_selection(selected_state: gr.SelectData, flux_loras):
47
- """Update UI when a LoRA is selected"""
48
- if selected_state.index >= len(flux_loras):
49
- return "### No LoRA selected", gr.update(), None, gr.update()
50
-
51
- selected_lora = flux_loras[selected_state.index]
52
- lora_repo = selected_lora["repo"]
53
- default_prompt = selected_lora.get("prompt")
54
-
55
- updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
56
 
57
- optimal_scale = selected_lora.get("lora_scale_config", 1.0)
58
- print("Selected Style: ", selected_lora['title'])
59
- print("Optimal Scale: ", optimal_scale)
60
- return updated_text, gr.update(value=default_prompt), selected_state.index, optimal_scale
61
-
62
- # This wrapper is kept for compatibility with the Gradio event triggers
63
- def infer_with_lora_wrapper(input_image, prompt, selected_index, lora_state, custom_lora, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
64
- """Wrapper function to handle state serialization"""
65
- # The 'custom_lora' and 'lora_state' arguments are no longer used but kept in the signature
66
- return infer_with_lora(input_image, prompt, selected_index, seed, guidance_scale, num_inference_steps, lora_scale, flux_loras, progress)
67
-
68
- @spaces.GPU # This decorator is only for Hugging Face Spaces hardware, not needed for local execution
69
- def infer_with_lora(input_image, prompt, selected_index, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
70
- """Generate image with selected LoRA"""
71
- global pipe
72
-
73
- # The seed is now always taken directly from the input. Randomization has been removed.
74
-
75
- # Unload any previous LoRA to ensure a clean state
76
- if "selected_lora" in pipe.get_active_adapters():
77
- pipe.unload_lora_weights()
78
-
79
- # Determine which LoRA to use from our gallery
80
- lora_to_use = None
81
- if selected_index is not None and flux_loras and selected_index < len(flux_loras):
82
- lora_to_use = flux_loras[selected_index]
83
-
84
- if lora_to_use:
85
- print(f"Applying LoRA: {lora_to_use['title']}")
86
- try:
87
- # Load LoRA directly from the Hugging Face Hub
88
- pipe.load_lora_weights(
89
- lora_to_use["repo"],
90
- weight_name=lora_to_use["weights"],
91
- adapter_name="selected_lora"
92
- )
93
- pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
94
- print(f"Loaded {lora_to_use['repo']} with scale {lora_scale}")
95
-
96
- except Exception as e:
97
- print(f"Error loading LoRA: {e}")
98
 
99
- # Use the prompt from the textbox directly.
100
- final_prompt = prompt
101
- print(f"Using prompt: {final_prompt}")
102
 
103
- input_image = input_image.convert("RGB")
104
-
105
- try:
106
- image = pipe(
107
- image=input_image,
108
- width=input_image.size[0],
109
- height=input_image.size[1],
110
- prompt=final_prompt,
111
- guidance_scale=guidance_scale,
112
- num_inference_steps=num_inference_steps,
113
- generator=torch.Generator().manual_seed(seed)
114
- ).images[0]
115
-
116
- # The seed value is no longer returned, as it's not being changed.
117
- return image, lora_scale
118
-
119
- except Exception as e:
120
- print(f"Error during inference: {e}")
121
- # Return an error state for all outputs
122
- return None, lora_scale
123
 
124
- # CSS styling
125
- css = """
126
- #gen_btn{height: 100%}
127
- #gen_column{align-self: stretch}
128
- #main_app {
129
- display: flex;
130
- gap: 20px;
131
- }
132
- #box_column {
133
- min-width: 400px;
134
- }
135
- #title{text-align: center}
136
- #title h1{font-size: 3em; display:inline-flex; align-items:center}
137
- #title img{width: 100px; margin-right: 0.5em}
138
- #selected_lora {
139
- color: #2563eb;
140
- font-weight: bold;
141
- }
142
- #prompt {
143
- flex-grow: 1;
144
- }
145
- #run_button {
146
- background: linear-gradient(45deg, #2563eb, #3b82f6);
147
- color: white;
148
- border: none;
149
- padding: 8px 16px;
150
- border-radius: 6px;
151
- font-weight: bold;
152
- }
153
- .custom_lora_card {
154
- background: #f8fafc;
155
- border: 1px solid #e2e8f0;
156
- border-radius: 8px;
157
- padding: 12px;
158
- margin: 8px 0;
159
- }
160
- #gallery{
161
- overflow: scroll !important
162
- }
163
- /* Custom CSS to ensure the input image is fully visible */
164
- #input_image_display div[data-testid="image"] img {
165
- object-fit: contain !important;
166
  }
167
  """
168
 
169
- # Create Gradio interface
170
- with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
171
- gr_flux_loras = gr.State(value=flux_loras_raw)
172
 
173
- title = gr.HTML(
174
- """<h1>FLUX Kontext Super LoRAs🖖</h1>""",
175
- elem_id="title",
176
- )
177
- selected_state = gr.State(value=None)
178
- # The following states are no longer used by the simplified logic but kept for component structure
179
- custom_loaded_lora = gr.State(value=None)
180
- lora_state = gr.State(value=1.0)
181
-
182
- with gr.Row(elem_id="main_app"):
183
- with gr.Column(scale=4, elem_id="box_column"):
184
- with gr.Group(elem_id="gallery_box"):
185
- input_image = gr.Image(
186
- label="Upload a picture of yourself",
187
- type="pil",
188
- height=300,
189
- elem_id="input_image_display"
190
- )
191
- gallery = gr.Gallery(
192
- label="Pick a LoRA",
193
- allow_preview=False,
194
- columns=4,
195
- elem_id="gallery",
196
- show_share_button=False,
197
- height=300,
198
- object_fit="contain"
199
- )
200
-
201
- custom_model = gr.Textbox(
202
- label="Or enter a custom HuggingFace FLUX LoRA",
203
- placeholder="e.g., username/lora-name",
204
- visible=False
205
- )
206
- custom_model_card = gr.HTML(visible=False)
207
- custom_model_button = gr.Button("Remove custom LoRA", visible=False)
208
 
209
- with gr.Column(scale=5):
210
- with gr.Row():
211
- prompt = gr.Textbox(
212
- label="Editing Prompt",
213
- show_label=False,
214
- lines=1,
215
- max_lines=1,
216
- placeholder="opt - describe the person/subject, e.g. 'a man with glasses and a beard'",
217
- elem_id="prompt"
218
- )
219
- run_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
220
 
221
- result = gr.Image(label="Generated Image", interactive=False, height=512)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
223
- with gr.Accordion("Advanced Settings", open=False):
224
- lora_scale = gr.Slider(
225
- label="LoRA Scale",
226
- minimum=0,
227
- maximum=2,
228
- step=0.1,
229
- value=1.0,
230
- info="Controls the strength of the LoRA effect"
 
 
 
 
 
 
 
 
 
 
231
  )
232
- seed = gr.Slider(
233
- label="Seed",
234
- minimum=0,
235
- maximum=MAX_SEED,
236
- step=1,
237
- value=0,
 
238
  )
 
 
 
239
  guidance_scale = gr.Slider(
240
  label="Guidance Scale",
241
  minimum=1,
242
- maximum=10,
243
  step=0.1,
244
- value=2.5,
245
  )
246
- num_inference_steps = gr.Slider(
247
- label="Timesteps",
248
- minimum=1,
249
- maximum=100,
250
- step=1,
251
- value=28,
252
- info="Number of inference steps"
253
- )
254
-
255
- prompt_title = gr.Markdown(
256
- value="### Click on a LoRA in the gallery to select it",
257
- visible=True,
258
- elem_id="selected_lora",
259
- )
260
 
261
- # Event handlers
262
- # The custom model inputs are no longer needed as we've hidden them.
263
-
264
- gallery.select(
265
- fn=update_selection,
266
- inputs=[gr_flux_loras],
267
- outputs=[prompt_title, prompt, selected_state, lora_scale],
268
- show_progress=False
269
- )
270
-
271
  gr.on(
272
  triggers=[run_button.click, prompt.submit],
273
- fn=infer_with_lora_wrapper,
274
- inputs=[input_image, prompt, selected_state, lora_state, custom_loaded_lora, seed, guidance_scale, num_inference_steps, lora_scale, gr_flux_loras],
275
- outputs=[result, lora_state]
276
- )
277
-
278
- # Initialize gallery
279
- demo.load(
280
- fn=lambda loras: ([(item["image"], item["title"]) for item in loras], loras),
281
- inputs=[gr_flux_loras],
282
- outputs=[gallery, gr_flux_loras]
283
  )
284
 
285
- demo.queue(default_concurrency_limit=None)
286
  demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
+ import random
4
  import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ dtype = torch.bfloat16
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ pipe = DiffusionPipeline.from_pretrained("prithivMLmods/Flux.1-krea-Merge-Transformer", torch_dtype=dtype).to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
 
16
 
17
+ @spaces.GPU()
18
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)):
19
+ if randomize_seed:
20
+ seed = random.randint(0, MAX_SEED)
21
+ generator = torch.Generator().manual_seed(seed)
22
+ image = pipe(
23
+ prompt = prompt,
24
+ width = width,
25
+ height = height,
26
+ num_inference_steps = num_inference_steps,
27
+ generator = generator,
28
+ guidance_scale=guidance_scale
29
+ ).images[0]
30
+ return image, seed
31
+
32
+ examples = [
33
+ "a tiny astronaut hatching from an egg on the moon",
34
+ "a cat holding a sign that says hello world",
35
+ "an anime illustration of a wiener schnitzel",
36
+ ]
37
 
38
+ css="""
39
+ #col-container {
40
+ margin: 0 auto;
41
+ max-width: 520px;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  }
43
  """
44
 
45
+ with gr.Blocks(css=css) as demo:
 
 
46
 
47
+ with gr.Column(elem_id="col-container"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ with gr.Row():
 
 
 
 
 
 
 
 
 
 
50
 
51
+ prompt = gr.Text(
52
+ label="Prompt",
53
+ show_label=False,
54
+ max_lines=1,
55
+ placeholder="Enter your prompt",
56
+ container=False,
57
+ )
58
+ run_button = gr.Button("Run", scale=0)
59
+
60
+ num_inference_steps = gr.Slider(
61
+ label="Number of inference steps",
62
+ minimum=1,
63
+ maximum=50,
64
+ step=1,
65
+ value=8,
66
+ )
67
+
68
+ result = gr.Image(label="Result", show_label=False)
69
+
70
+ with gr.Accordion("Advanced Settings", open=False):
71
 
72
+ seed = gr.Slider(
73
+ label="Seed",
74
+ minimum=0,
75
+ maximum=MAX_SEED,
76
+ step=1,
77
+ value=0,
78
+ )
79
+
80
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
81
+
82
+ with gr.Row():
83
+
84
+ width = gr.Slider(
85
+ label="Width",
86
+ minimum=256,
87
+ maximum=MAX_IMAGE_SIZE,
88
+ step=32,
89
+ value=1024,
90
  )
91
+
92
+ height = gr.Slider(
93
+ label="Height",
94
+ minimum=256,
95
+ maximum=MAX_IMAGE_SIZE,
96
+ step=32,
97
+ value=1024,
98
  )
99
+
100
+ with gr.Row():
101
+
102
  guidance_scale = gr.Slider(
103
  label="Guidance Scale",
104
  minimum=1,
105
+ maximum=15,
106
  step=0.1,
107
+ value=3.5,
108
  )
109
+
110
+ gr.Examples(
111
+ examples = examples,
112
+ fn = infer,
113
+ inputs = [prompt],
114
+ outputs = [result, seed],
115
+ cache_examples="lazy"
116
+ )
 
 
 
 
 
 
117
 
 
 
 
 
 
 
 
 
 
 
118
  gr.on(
119
  triggers=[run_button.click, prompt.submit],
120
+ fn = infer,
121
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
122
+ outputs = [result, seed]
 
 
 
 
 
 
 
123
  )
124
 
 
125
  demo.launch()