Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel | |
from huggingface_hub import snapshot_download | |
from qwen_vl_utils import process_vision_info | |
def load_model(model_name): | |
""" | |
Load the specified model and its processor based on the model name. | |
Args: | |
model_name (str): Name of the model ("dots.ocr" or "Dolphin"). | |
Returns: | |
tuple: (model, processor) for the specified model. | |
""" | |
if model_name == "dots.ocr": | |
model_id = "rednote-hilab/dots.ocr" | |
model_path = "./models/dots-ocr-local" | |
snapshot_download( | |
repo_id=model_id, | |
local_dir=model_path, | |
local_dir_use_symlinks=False, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, | |
attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) | |
elif model_name == "Dolphin": | |
model_id = "ByteDance/Dolphin" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = VisionEncoderDecoderModel.from_pretrained(model_id) | |
model.eval() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
model = model.half() # Use half precision | |
else: | |
raise ValueError(f"Unknown model: {model_name}") | |
return model, processor | |
def inference_dots_ocr(model, processor, image, prompt, max_new_tokens): | |
""" | |
Perform inference using the dots.ocr model. | |
Args: | |
model: The loaded dots.ocr model. | |
processor: The corresponding processor. | |
image (PIL.Image): Input image. | |
prompt (str): Prompt for inference. | |
max_new_tokens (int): Maximum number of tokens to generate. | |
Returns: | |
str: Generated text output. | |
""" | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image}, | |
{"type": "text", "text": prompt} | |
] | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(model.device) | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=False, | |
temperature=0.1 | |
) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
) | |
return output_text[0] if output_text else "" | |
def inference_dolphin(model, processor, image): | |
""" | |
Perform inference using the Dolphin model. | |
Args: | |
model: The loaded Dolphin model. | |
processor: The corresponding processor. | |
image (PIL.Image): Input image. | |
Returns: | |
str: Generated text output. | |
""" | |
pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half() | |
generated_ids = model.generate(pixel_values) | |
generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text |