prithivMLmods commited on
Commit
5f30c24
·
verified ·
1 Parent(s): e7fe917

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +107 -0
model.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoProcessor, VisionEncoderDecoderModel
3
+ from huggingface_hub import snapshot_download
4
+ from qwen_vl_utils import process_vision_info
5
+
6
+ def load_model(model_name):
7
+ """
8
+ Load the specified model and its processor based on the model name.
9
+
10
+ Args:
11
+ model_name (str): Name of the model ("dots.ocr" or "Dolphin").
12
+
13
+ Returns:
14
+ tuple: (model, processor) for the specified model.
15
+ """
16
+ if model_name == "dots.ocr":
17
+ model_id = "rednote-hilab/dots.ocr"
18
+ model_path = "./models/dots-ocr-local"
19
+ snapshot_download(
20
+ repo_id=model_id,
21
+ local_dir=model_path,
22
+ local_dir_use_symlinks=False,
23
+ )
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ model_path,
26
+ attn_implementation="flash_attention_2",
27
+ torch_dtype=torch.bfloat16,
28
+ device_map="auto",
29
+ trust_remote_code=True
30
+ )
31
+ processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
32
+ elif model_name == "Dolphin":
33
+ model_id = "ByteDance/Dolphin"
34
+ processor = AutoProcessor.from_pretrained(model_id)
35
+ model = VisionEncoderDecoderModel.from_pretrained(model_id)
36
+ model.eval()
37
+ device = "cuda" if torch.cuda.is_available() else "cpu"
38
+ model.to(device)
39
+ model = model.half() # Use half precision
40
+ else:
41
+ raise ValueError(f"Unknown model: {model_name}")
42
+ return model, processor
43
+
44
+ def inference_dots_ocr(model, processor, image, prompt, max_new_tokens):
45
+ """
46
+ Perform inference using the dots.ocr model.
47
+
48
+ Args:
49
+ model: The loaded dots.ocr model.
50
+ processor: The corresponding processor.
51
+ image (PIL.Image): Input image.
52
+ prompt (str): Prompt for inference.
53
+ max_new_tokens (int): Maximum number of tokens to generate.
54
+
55
+ Returns:
56
+ str: Generated text output.
57
+ """
58
+ messages = [
59
+ {
60
+ "role": "user",
61
+ "content": [
62
+ {"type": "image", "image": image},
63
+ {"type": "text", "text": prompt}
64
+ ]
65
+ }
66
+ ]
67
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
68
+ image_inputs, video_inputs = process_vision_info(messages)
69
+ inputs = processor(
70
+ text=[text],
71
+ images=image_inputs,
72
+ videos=video_inputs,
73
+ padding=True,
74
+ return_tensors="pt",
75
+ )
76
+ inputs = inputs.to(model.device)
77
+ with torch.no_grad():
78
+ generated_ids = model.generate(
79
+ **inputs,
80
+ max_new_tokens=max_new_tokens,
81
+ do_sample=False,
82
+ temperature=0.1
83
+ )
84
+ generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
85
+ output_text = processor.batch_decode(
86
+ generated_ids_trimmed,
87
+ skip_special_tokens=True,
88
+ clean_up_tokenization_spaces=False
89
+ )
90
+ return output_text[0] if output_text else ""
91
+
92
+ def inference_dolphin(model, processor, image):
93
+ """
94
+ Perform inference using the Dolphin model.
95
+
96
+ Args:
97
+ model: The loaded Dolphin model.
98
+ processor: The corresponding processor.
99
+ image (PIL.Image): Input image.
100
+
101
+ Returns:
102
+ str: Generated text output.
103
+ """
104
+ pixel_values = processor(image, return_tensors="pt").pixel_values.to(model.device).half()
105
+ generated_ids = model.generate(pixel_values)
106
+ generated_text = processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
107
+ return generated_text