Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,815 Bytes
e2863bc 760a8e5 e2863bc 760a8e5 e2863bc 89e2ec5 d327195 02c1205 e2863bc f52dc18 e2863bc b6e3398 e2863bc d327195 c6cdcb1 e2863bc c6cdcb1 e2863bc 89e2ec5 cb60349 e2863bc d327195 e2863bc d327195 e2863bc 02c1205 e2863bc 8af917c e2863bc c6cdcb1 e2863bc cb60349 e2863bc d327195 e2863bc 02c1205 e2863bc 760a8e5 e2863bc afd88a8 e2863bc c6cdcb1 e2863bc cb60349 e2863bc d327195 e2863bc 02c1205 e2863bc 760a8e5 e2863bc 2e943bd e2863bc 24af2fc e2863bc b6e3398 e2863bc b6e3398 e2863bc 6c355bd e2863bc b6e3398 094beaa e2863bc b6e3398 e2863bc b6e3398 e2863bc f0b3d19 e2863bc b6e3398 f0b3d19 b6e3398 e2863bc 02c1205 e2863bc b7d7dc4 e2863bc b6e3398 df3fc87 b6e3398 89e2ec5 e2863bc b793d64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import os
import time
import threading
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
Qwen2_5_VLForConditionalGeneration,
Qwen2VLForConditionalGeneration,
Glm4vForConditionalGeneration,
AutoModelForVision2Seq,
AutoProcessor,
TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info
# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_M,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load MonkeyOCR-pro-1.2B
MODEL_ID_X = "echo840/MonkeyOCR-pro-1.2B"
SUBFOLDER = "Recognition"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, subfolder=SUBFOLDER, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
subfolder=SUBFOLDER,
torch_dtype=torch.float16
).to(device).eval()
# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_T,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load GLM-4.1V-9B-Thinking
MODEL_ID_S = "zai-org/GLM-4.1V-9B-Thinking"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Glm4vForConditionalGeneration.from_pretrained(
MODEL_ID_S,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
# Load kanana-1.5-v-3b-instruct
MODEL_ID_F = "kakaocorp/kanana-1.5-v-3b-instruct"
processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True)
model_f = AutoModelForVision2Seq.from_pretrained(
MODEL_ID_F,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
def downsample_video(video_path):
"""
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generate responses using the selected model for image input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "MonkeyOCR-pro-1.2B":
processor = processor_x
model = model_x
elif model_name == "Megalodon-OCR-Sync-0713":
processor = processor_t
model = model_t
elif model_name == "GLM-4.1V-9B-Thinking":
processor = processor_s
model = model_s
elif model_name == "kanana-1.5-v-3b":
processor = processor_f
model = model_f
else:
yield "Invalid model selected.", "Invalid model selected."
return
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt_full],
images=[image],
return_tensors="pt",
padding=True,
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generate responses using the selected model for video input.
"""
if model_name == "Camel-Doc-OCR-062825":
processor = processor_m
model = model_m
elif model_name == "MonkeyOCR-pro-1.2B":
processor = processor_x
model = model_x
elif model_name == "Megalodon-OCR-Sync-0713":
processor = processor_t
model = model_t
elif model_name == "GLM-4.1V-9B-Thinking":
processor = processor_s
model = model_s
elif model_name == "kanana-1.5-v-3b":
processor = processor_f
model = model_f
else:
yield "Invalid model selected.", "Invalid model selected."
return
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": text}]}
]
for frame in frames:
image, timestamp = frame
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "image": image})
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=False,
max_length=MAX_INPUT_TOKEN_LENGTH
).to(device)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
# Define examples for image and video inference
image_examples = [
["explain the movie shot in detail.", "images/5.jpg"],
["convert this page to doc [text] precisely for markdown.", "images/1.png"],
["convert this page to doc [table] precisely for markdown.", "images/2.png"],
["explain the movie shot in detail.", "images/3.png"],
["fill the correct numbers.", "images/4.png"]
]
video_examples = [
["explain the ad video in detail.", "videos/1.mp4"],
["explain the video in detail.", "videos/2.mp4"]
]
# Updated CSS with model choice highlighting
css = """
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
.canvas-output {
border: 2px solid #4682B4;
border-radius: 10px;
padding: 20px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
gr.Markdown("# **[Multimodal VLM OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Image")
image_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=image_examples,
inputs=[image_query, image_upload]
)
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Video")
video_submit = gr.Button("Submit", elem_classes="submit-btn")
gr.Examples(
examples=video_examples,
inputs=[video_query, video_upload]
)
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column():
with gr.Column(elem_classes="canvas-output"):
gr.Markdown("## Output")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.md)")
model_choice = gr.Radio(
choices=["Camel-Doc-OCR-062825", "GLM-4.1V-9B-Thinking", "Megalodon-OCR-Sync-0713", "MonkeyOCR-pro-1.2B", "kanana-1.5-v-3b"],
label="Select Model",
value="Camel-Doc-OCR-062825"
)
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Comparator/discussions)")
# Define the submit button actions
image_submit.click(fn=generate_image,
inputs=[
model_choice, image_query, image_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[
model_choice, video_query, video_upload,
max_new_tokens, temperature, top_p, top_k,
repetition_penalty
],
outputs=[output, markdown_output])
if __name__ == "__main__":
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True) |