File size: 11,815 Bytes
e2863bc
 
760a8e5
e2863bc
 
 
 
760a8e5
e2863bc
 
 
89e2ec5
d327195
02c1205
e2863bc
 
 
 
 
 
f52dc18
 
e2863bc
b6e3398
e2863bc
 
 
 
 
 
 
 
 
 
 
d327195
c6cdcb1
 
 
e2863bc
 
 
c6cdcb1
e2863bc
 
 
89e2ec5
cb60349
e2863bc
 
 
 
 
 
 
d327195
 
e2863bc
d327195
e2863bc
 
 
 
 
02c1205
 
 
 
 
 
 
 
 
e2863bc
 
 
 
 
 
8af917c
e2863bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6cdcb1
e2863bc
 
cb60349
e2863bc
 
d327195
e2863bc
 
02c1205
 
 
e2863bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760a8e5
e2863bc
 
 
 
 
 
 
afd88a8
e2863bc
 
 
 
 
 
 
 
 
 
 
 
c6cdcb1
e2863bc
 
cb60349
e2863bc
 
d327195
e2863bc
 
02c1205
 
 
e2863bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760a8e5
e2863bc
 
 
 
 
 
 
 
2e943bd
e2863bc
24af2fc
e2863bc
 
b6e3398
e2863bc
 
b6e3398
e2863bc
 
 
 
 
6c355bd
e2863bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e3398
094beaa
e2863bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e3398
e2863bc
 
 
 
 
 
b6e3398
e2863bc
 
f0b3d19
e2863bc
b6e3398
 
f0b3d19
b6e3398
e2863bc
02c1205
e2863bc
b7d7dc4
e2863bc
b6e3398
df3fc87
b6e3398
89e2ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2863bc
b793d64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import time
import threading
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    Glm4vForConditionalGeneration,
    AutoModelForVision2Seq,
    AutoProcessor,
    TextIteratorStreamer,
)
from qwen_vl_utils import process_vision_info

# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Camel-Doc-OCR-062825
MODEL_ID_M = "prithivMLmods/Camel-Doc-OCR-062825"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load MonkeyOCR-pro-1.2B
MODEL_ID_X = "echo840/MonkeyOCR-pro-1.2B"
SUBFOLDER = "Recognition"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, subfolder=SUBFOLDER, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Load Megalodon-OCR-Sync-0713
MODEL_ID_T = "prithivMLmods/Megalodon-OCR-Sync-0713"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load GLM-4.1V-9B-Thinking
MODEL_ID_S = "zai-org/GLM-4.1V-9B-Thinking"
processor_s = AutoProcessor.from_pretrained(MODEL_ID_S, trust_remote_code=True)
model_s = Glm4vForConditionalGeneration.from_pretrained(
    MODEL_ID_S,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load kanana-1.5-v-3b-instruct 
MODEL_ID_F = "kakaocorp/kanana-1.5-v-3b-instruct"
processor_f = AutoProcessor.from_pretrained(MODEL_ID_F, trust_remote_code=True)
model_f = AutoModelForVision2Seq.from_pretrained(
    MODEL_ID_F,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

def downsample_video(video_path):
    """
    Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generate responses using the selected model for image input.
    """
    if model_name == "Camel-Doc-OCR-062825":
        processor = processor_m
        model = model_m
    elif model_name == "MonkeyOCR-pro-1.2B":
        processor = processor_x
        model = model_x
    elif model_name == "Megalodon-OCR-Sync-0713":
        processor = processor_t
        model = model_t
    elif model_name == "GLM-4.1V-9B-Thinking":
        processor = processor_s
        model = model_s
    elif model_name == "kanana-1.5-v-3b":
        processor = processor_f
        model = model_f
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generate responses using the selected model for video input.
    """
    if model_name == "Camel-Doc-OCR-062825":
        processor = processor_m
        model = model_m
    elif model_name == "MonkeyOCR-pro-1.2B":
        processor = processor_x
        model = model_x
    elif model_name == "Megalodon-OCR-Sync-0713":
        processor = processor_t
        model = model_t
    elif model_name == "GLM-4.1V-9B-Thinking":
        processor = processor_s
        model = model_s
    elif model_name == "kanana-1.5-v-3b":
        processor = processor_f
        model = model_f
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": text}]}
    ]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

# Define examples for image and video inference
image_examples = [
    ["explain the movie shot in detail.", "images/5.jpg"],
    ["convert this page to doc [text] precisely for markdown.", "images/1.png"],
    ["convert this page to doc [table] precisely for markdown.", "images/2.png"],
    ["explain the movie shot in detail.", "images/3.png"],   
    ["fill the correct numbers.", "images/4.png"]
]

video_examples = [
    ["explain the ad video in detail.", "videos/1.mp4"],
    ["explain the video in detail.", "videos/2.mp4"]
]

# Updated CSS with model choice highlighting
css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
.canvas-output {
    border: 2px solid #4682B4;
    border-radius: 10px;
    padding: 20px;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Multimodal VLM OCR](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        with gr.Column():
            with gr.Column(elem_classes="canvas-output"):
                gr.Markdown("## Output")
                output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=2)

                with gr.Accordion("(Result.md)", open=False):                
                    markdown_output = gr.Markdown(label="(Result.md)")

            model_choice = gr.Radio(
                choices=["Camel-Doc-OCR-062825", "GLM-4.1V-9B-Thinking", "Megalodon-OCR-Sync-0713", "MonkeyOCR-pro-1.2B", "kanana-1.5-v-3b"],
                label="Select Model",
                value="Camel-Doc-OCR-062825"
            )

            gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR-Comparator/discussions)")

    # Define the submit button actions
    image_submit.click(fn=generate_image,
                       inputs=[
                           model_choice, image_query, image_upload,
                           max_new_tokens, temperature, top_p, top_k,
                           repetition_penalty
                       ],
                       outputs=[output, markdown_output])
    video_submit.click(fn=generate_video,
                       inputs=[
                           model_choice, video_query, video_upload,
                           max_new_tokens, temperature, top_p, top_k,
                           repetition_penalty
                       ],
                       outputs=[output, markdown_output])

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)