Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,13 @@
|
|
1 |
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
import time
|
6 |
-
import
|
7 |
-
from threading import Thread
|
8 |
-
import base64
|
9 |
-
from io import BytesIO
|
10 |
-
import re
|
11 |
-
|
12 |
import gradio as gr
|
13 |
import spaces
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
-
from PIL import Image
|
17 |
import cv2
|
18 |
-
|
19 |
from transformers import (
|
20 |
-
Qwen2VLForConditionalGeneration,
|
21 |
Qwen2_5_VLForConditionalGeneration,
|
22 |
AutoProcessor,
|
23 |
TextIteratorStreamer,
|
@@ -67,91 +57,6 @@ model_s = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
67 |
torch_dtype=torch.float16
|
68 |
).to(device).eval()
|
69 |
|
70 |
-
# Helper functions for object detection
|
71 |
-
def image_to_base64(image):
|
72 |
-
"""Convert a PIL image to a base64-encoded string."""
|
73 |
-
buffered = BytesIO()
|
74 |
-
image.save(buffered, format="PNG")
|
75 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
76 |
-
return img_str
|
77 |
-
|
78 |
-
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
|
79 |
-
"""Draw bounding boxes on an image."""
|
80 |
-
draw = ImageDraw.Draw(image)
|
81 |
-
for box in bounding_boxes:
|
82 |
-
xmin, ymin, xmax, ymax = box
|
83 |
-
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
|
84 |
-
return image
|
85 |
-
|
86 |
-
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
|
87 |
-
"""Rescale bounding boxes from normalized (1000x1000) to original image dimensions."""
|
88 |
-
x_scale = original_width / scaled_width
|
89 |
-
y_scale = original_height / scaled_height
|
90 |
-
rescaled_boxes = []
|
91 |
-
for box in bounding_boxes:
|
92 |
-
xmin, ymin, xmax, ymax = box
|
93 |
-
rescaled_box = [
|
94 |
-
xmin * x_scale,
|
95 |
-
ymin * y_scale,
|
96 |
-
xmax * x_scale,
|
97 |
-
ymax * y_scale
|
98 |
-
]
|
99 |
-
rescaled_boxes.append(rescaled_box)
|
100 |
-
return rescaled_boxes
|
101 |
-
|
102 |
-
# Default system prompt for object detection
|
103 |
-
default_system_prompt = (
|
104 |
-
"You are a helpful assistant to detect objects in images. When asked to detect elements based on a description, Parse only the boxes; don't write unnecessary content."
|
105 |
-
"you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] with the values being scaled "
|
106 |
-
"to 512 by 512 pixels. When there are more than one result, answer with a list of bounding boxes in the form "
|
107 |
-
"of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
|
108 |
-
)
|
109 |
-
|
110 |
-
# Function for object detection
|
111 |
-
@spaces.GPU
|
112 |
-
def run_example(image, text_input, system_prompt):
|
113 |
-
"""Detect objects in an image and return bounding box annotations."""
|
114 |
-
model = model_x
|
115 |
-
processor = processor_x
|
116 |
-
|
117 |
-
messages = [
|
118 |
-
{
|
119 |
-
"role": "user",
|
120 |
-
"content": [
|
121 |
-
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
|
122 |
-
{"type": "text", "text": system_prompt},
|
123 |
-
{"type": "text", "text": text_input},
|
124 |
-
],
|
125 |
-
}
|
126 |
-
]
|
127 |
-
|
128 |
-
text = processor.apply_chat_template(
|
129 |
-
messages, tokenize=False, add_generation_prompt=True
|
130 |
-
)
|
131 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
132 |
-
inputs = processor(
|
133 |
-
text=[text],
|
134 |
-
images=image_inputs,
|
135 |
-
videos=video_inputs,
|
136 |
-
padding=True,
|
137 |
-
return_tensors="pt",
|
138 |
-
)
|
139 |
-
inputs = inputs.to("cuda")
|
140 |
-
|
141 |
-
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
142 |
-
generated_ids_trimmed = [
|
143 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
144 |
-
]
|
145 |
-
output_text = processor.batch_decode(
|
146 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
147 |
-
)
|
148 |
-
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
|
149 |
-
matches = re.findall(pattern, str(output_text))
|
150 |
-
parsed_boxes = [[int(num) for num in match] for match in matches]
|
151 |
-
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
|
152 |
-
annotated_image = draw_bounding_boxes(image.copy(), scaled_boxes)
|
153 |
-
return output_text[0], str(parsed_boxes), annotated_image
|
154 |
-
|
155 |
def downsample_video(video_path):
|
156 |
"""
|
157 |
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
|
@@ -220,7 +125,7 @@ def generate_image(model_name: str, text: str, image: Image.Image,
|
|
220 |
).to(device)
|
221 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
222 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
223 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
224 |
thread.start()
|
225 |
buffer = ""
|
226 |
for new_text in streamer:
|
@@ -287,7 +192,7 @@ def generate_video(model_name: str, text: str, video_path: str,
|
|
287 |
"top_k": top_k,
|
288 |
"repetition_penalty": repetition_penalty,
|
289 |
}
|
290 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
291 |
thread.start()
|
292 |
buffer = ""
|
293 |
for new_text in streamer:
|
@@ -309,12 +214,6 @@ video_examples = [
|
|
309 |
["explain the video in detail.", "videos/2.mp4"]
|
310 |
]
|
311 |
|
312 |
-
# Define examples for object detection
|
313 |
-
object_detection_examples = [
|
314 |
-
["Detect Spider-Man T-shirt.", "images/22.png"],
|
315 |
-
["Detect Green Car.", "images/11.png"]
|
316 |
-
]
|
317 |
-
|
318 |
# Added CSS to style the output area as a "Canvas"
|
319 |
css = """
|
320 |
.submit-btn {
|
@@ -333,7 +232,7 @@ css = """
|
|
333 |
|
334 |
# Create the Gradio Interface
|
335 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
336 |
-
gr.Markdown("# **
|
337 |
with gr.Row():
|
338 |
with gr.Column():
|
339 |
with gr.Tabs():
|
@@ -353,27 +252,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
353 |
examples=video_examples,
|
354 |
inputs=[video_query, video_upload]
|
355 |
)
|
356 |
-
with gr.TabItem("Object Detection / Localization"):
|
357 |
-
with gr.Row():
|
358 |
-
with gr.Column():
|
359 |
-
input_img = gr.Image(label="Input Image [ 1024x1024 ]", type="pil")
|
360 |
-
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt, visible=False)
|
361 |
-
text_input = gr.Textbox(label="Query Input", placeholder="Enter query...")
|
362 |
-
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
|
363 |
-
gr.Examples(
|
364 |
-
examples=object_detection_examples,
|
365 |
-
inputs=[text_input, input_img]
|
366 |
-
)
|
367 |
-
with gr.Column():
|
368 |
-
model_output_text = gr.Textbox(label="Model Output Text")
|
369 |
-
parsed_boxes = gr.Textbox(label="Parsed Boxes")
|
370 |
-
annotated_image = gr.Image(label="Annotated Image")
|
371 |
-
|
372 |
-
submit_btn.click(
|
373 |
-
fn=run_example,
|
374 |
-
inputs=[input_img, text_input, system_prompt],
|
375 |
-
outputs=[model_output_text, parsed_boxes, annotated_image]
|
376 |
-
)
|
377 |
|
378 |
with gr.Accordion("Advanced options", open=False):
|
379 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
@@ -397,22 +275,6 @@ with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
|
397 |
)
|
398 |
|
399 |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization/discussions)")
|
400 |
-
gr.Markdown("> [Camel-Doc-OCR-062825](https://huggingface.co/prithivMLmods/Camel-Doc-OCR-062825) : camel-doc-ocr-062825 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for document retrieval, content extraction, and analysis recognition. built on top of the qwen2.5-vl architecture, this model enhances document comprehension capabilities.")
|
401 |
-
gr.Markdown("> [OCRFlux-3B](https://huggingface.co/ChatDOC/OCRFlux-3B) : ocrflux-3b model that's fine-tuned from qwen2.5-vl-3b-instruct using our private document datasets and some data from olmocr-mix-0225 dataset. optimized for document retrieval, content extraction, and analysis recognition. the best way to use this model is via the ocrflux toolkit.")
|
402 |
-
gr.Markdown("> [ViLaSR](https://huggingface.co/AntResearchNLP/ViLaSR) : vilasr-7b model as presented in reinforcing spatial reasoning in vision-language models with interwoven thinking and visual drawing. efficient reasoning capabilities.")
|
403 |
-
gr.Markdown("> [ShotVL-7B](https://huggingface.co/Vchitect/ShotVL-7B) : shotvl-7b is a fine-tuned version of qwen2.5-vl-7b-instruct, trained by supervised fine-tuning on the largest and high-quality dataset for cinematic language understanding to date. it currently achieves state-of-the-art performance on shotbench.")
|
404 |
-
gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")
|
405 |
-
|
406 |
-
image_submit.click(
|
407 |
-
fn=generate_image,
|
408 |
-
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
409 |
-
outputs=[output, markdown_output]
|
410 |
-
)
|
411 |
-
video_submit.click(
|
412 |
-
fn=generate_video,
|
413 |
-
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
414 |
-
outputs=[output, markdown_output]
|
415 |
-
)
|
416 |
|
417 |
if __name__ == "__main__":
|
418 |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import time
|
3 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
import torch
|
7 |
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
import cv2
|
|
|
10 |
from transformers import (
|
|
|
11 |
Qwen2_5_VLForConditionalGeneration,
|
12 |
AutoProcessor,
|
13 |
TextIteratorStreamer,
|
|
|
57 |
torch_dtype=torch.float16
|
58 |
).to(device).eval()
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def downsample_video(video_path):
|
61 |
"""
|
62 |
Downsample a video to evenly spaced frames, returning each as a PIL image with its timestamp.
|
|
|
125 |
).to(device)
|
126 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
127 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
128 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
129 |
thread.start()
|
130 |
buffer = ""
|
131 |
for new_text in streamer:
|
|
|
192 |
"top_k": top_k,
|
193 |
"repetition_penalty": repetition_penalty,
|
194 |
}
|
195 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
196 |
thread.start()
|
197 |
buffer = ""
|
198 |
for new_text in streamer:
|
|
|
214 |
["explain the video in detail.", "videos/2.mp4"]
|
215 |
]
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
# Added CSS to style the output area as a "Canvas"
|
218 |
css = """
|
219 |
.submit-btn {
|
|
|
232 |
|
233 |
# Create the Gradio Interface
|
234 |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
235 |
+
gr.Markdown("# **Doc VLMs v2**")
|
236 |
with gr.Row():
|
237 |
with gr.Column():
|
238 |
with gr.Tabs():
|
|
|
252 |
examples=video_examples,
|
253 |
inputs=[video_query, video_upload]
|
254 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
with gr.Accordion("Advanced options", open=False):
|
257 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
|
|
275 |
)
|
276 |
|
277 |
gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Doc-VLMs-v2-Localization/discussions)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
if __name__ == "__main__":
|
280 |
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)
|