|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
css = ''' |
|
.gradio-container{max-width: 1000px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
|
|
SYSTEM_PROMPT = """You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can. |
|
|
|
To do so, you must follow a structured reasoning process in a cycle of: |
|
|
|
1. **Thought:** |
|
- Analyze the problem and explain your reasoning. |
|
- Identify any necessary tools or techniques. |
|
|
|
2. **Code:** |
|
- Implement the solution using Python. |
|
- Enclose the code block with `<end_code>`. |
|
|
|
3. **Observation:** |
|
- Explain the output and verify correctness. |
|
|
|
4. **Final Answer:** |
|
- Summarize the solution clearly. |
|
|
|
Always adhere to the **Thought → Code → Observation → Final Answer** structure. |
|
""" |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
system_message = SYSTEM_PROMPT |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat.completions.create( |
|
model="meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
messages=messages, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P", |
|
), |
|
], |
|
css=css |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |