File size: 2,403 Bytes
9240e91
 
 
 
 
0c1d553
 
9240e91
0c1d553
9240e91
 
 
 
 
 
 
 
 
 
695e89b
22aeb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
695e89b
 
9240e91
 
 
 
 
 
 
 
22aeb2c
 
 
 
9240e91
 
 
 
 
 
 
 
 
 
 
695e89b
13c902d
9240e91
 
 
 
 
 
 
 
 
 
 
 
 
 
22aeb2c
9240e91
 
 
 
 
 
 
 
 
 
0c1d553
9240e91
695e89b
9240e91
4f16846
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from openai import OpenAI
import os

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

ACCESS_TOKEN = os.getenv("HF_TOKEN")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

SYSTEM_PROMPT = """You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can.

To do so, you must follow a structured reasoning process in a cycle of:

1. **Thought:**  
   - Analyze the problem and explain your reasoning.  
   - Identify any necessary tools or techniques.  

2. **Code:**  
   - Implement the solution using Python.  
   - Enclose the code block with `<end_code>`.  

3. **Observation:**  
   - Explain the output and verify correctness.  

4. **Final Answer:**  
   - Summarize the solution clearly.

Always adhere to the **Thought → Code → Observation → Final Answer** structure.
"""

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # Apply the structured system prompt
    system_message = SYSTEM_PROMPT

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    
    for message in client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        
        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-P",
        ),
    ],
    css=css
)

if __name__ == "__main__":
    demo.launch()