File size: 13,360 Bytes
e336179
 
b476d80
 
786abd0
 
 
 
 
b476d80
e336179
b476d80
786abd0
 
dc29382
786abd0
 
 
3f138ad
55a7e0e
 
786abd0
 
 
3b057f7
786abd0
 
 
3b057f7
786abd0
 
 
c4d5c0b
3b057f7
 
 
 
c4d5c0b
55a7e0e
3b057f7
 
 
 
 
 
 
 
 
 
55a7e0e
a3c0180
786abd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476d80
 
c02a1b1
e336179
b476d80
 
 
 
 
 
 
 
e336179
786abd0
 
 
 
b476d80
 
 
 
 
 
c02a1b1
 
55a7e0e
 
a3c0180
95bf8be
a3c0180
 
 
 
 
e780483
55a7e0e
e780483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c0180
3b057f7
a3c0180
786abd0
 
 
 
 
 
 
 
 
 
 
 
b55b5cd
a3c0180
55a7e0e
 
 
2d99b82
 
 
 
 
 
 
a3c0180
2d99b82
55a7e0e
 
2d99b82
 
 
 
 
55a7e0e
 
 
 
 
2d99b82
 
 
 
 
 
 
 
 
 
55a7e0e
2d99b82
 
55a7e0e
2d99b82
 
55a7e0e
2d99b82
 
 
e780483
55a7e0e
 
 
 
 
 
 
e780483
 
 
 
 
 
55a7e0e
e780483
 
 
 
 
 
55a7e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c0180
55a7e0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bfb84e
 
 
 
55a7e0e
a3c0180
 
 
 
 
 
 
 
 
 
4bfb84e
 
786abd0
 
 
 
 
 
 
55a7e0e
 
 
786abd0
 
 
 
 
 
 
 
 
 
789bea8
55a7e0e
 
 
 
 
 
 
 
 
 
554bd83
55a7e0e
786abd0
 
 
55a7e0e
786abd0
55a7e0e
786abd0
 
 
e336179
b476d80
786abd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    AutoProcessor,
    Gemma3ForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

# Qwen2-VL (for optional image inference)

MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_VL,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")

def check_text(prompt, negative=""):
    for i in bad_words:
        if i in prompt:
            return True
    for i in bad_words_negative:
        if i in negative:
            return True
    return False

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

dtype = torch.float16 if device.type == "cuda" else torch.float32


# Gemma3 Model (default for text, image, & video inference)

gemma3_model_id = "google/gemma-3-4b-it"
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
    gemma3_model_id, device_map="auto"
).eval()
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)

# VIDEO PROCESSING HELPER

def downsample_video(video_path):
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            # Convert from BGR to RGB and then to PIL Image.
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# MAIN GENERATION FUNCTION

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.lower().strip()

    # ----- Qwen2-VL branch (triggered with @qwen2-vl) -----
    if lower_text.startswith("@qwen2-vl"):
        prompt_clean = re.sub(r"@qwen2-vl", "", text, flags=re.IGNORECASE).strip().strip('"')
        if files:
            images = [load_image(f) for f in files]
            messages = [{
                "role": "user",
                "content": [
                    *[{"type": "image", "image": image} for image in images],
                    {"type": "text", "text": prompt_clean},
                ]
            }]
            prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
            ]
            inputs = processor.apply_chat_template(
                messages, add_generation_prompt=True, tokenize=True,
                return_dict=True, return_tensors="pt"
            ).to("cuda", dtype=torch.float16)
        streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing with Qwen2VL")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # ----- Default branch: Gemma3 (for text, image, & video inference) -----
    if files:
        # Check if any provided file is a video based on extension.
        video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
        if any(str(f).lower().endswith(video_extensions) for f in files):
            # Video inference branch.
            prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
            ]
            # Append each frame (with its timestamp) to the conversation.
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
            inputs = gemma3_processor.apply_chat_template(
                messages, add_generation_prompt=True, tokenize=True,
                return_dict=True, return_tensors="pt"
            ).to(gemma3_model.device, dtype=torch.bfloat16)
            streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = {
                **inputs,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": True,
                "temperature": temperature,
                "top_p": top_p,
                "top_k": top_k,
                "repetition_penalty": repetition_penalty,
            }
            thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
            thread.start()
            buffer = ""
            yield progress_bar_html("Processing video with Gemma3")
            for new_text in streamer:
                buffer += new_text
                time.sleep(0.01)
                yield buffer
            return
        else:
            # Image inference branch.
            prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
            images = [load_image(f) for f in files]
            messages = [{
                "role": "user",
                "content": [
                    *[{"type": "image", "image": image} for image in images],
                    {"type": "text", "text": prompt_clean},
                ]
            }]
            inputs = gemma3_processor.apply_chat_template(
                messages, tokenize=True, add_generation_prompt=True,
                return_dict=True, return_tensors="pt"
            ).to(gemma3_model.device, dtype=torch.bfloat16)
            streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = {
                **inputs,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
                "do_sample": True,
                "temperature": temperature,
                "top_p": top_p,
                "top_k": top_k,
                "repetition_penalty": repetition_penalty,
            }
            thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
            thread.start()
            buffer = ""
            yield progress_bar_html("Processing with Gemma3")
            for new_text in streamer:
                buffer += new_text
                time.sleep(0.01)
                yield buffer
            return
    else:
        # Text-only inference branch.
        messages = [
            {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
            {"role": "user", "content": [{"type": "text", "text": text}]}
        ]
        inputs = gemma3_processor.apply_chat_template(
            messages, add_generation_prompt=True, tokenize=True,
            return_dict=True, return_tensors="pt"
        ).to(gemma3_model.device, dtype=torch.bfloat16)
        streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
        thread.start()
        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response


# Gradio Interface

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [{"text": "Create a short story based on the image.","files": ["examples/1111.jpg"]}],
        [{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
        [{"text": "Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
        [{"text": "Which movie character is this?", "files": ["examples/9999.jpg"]}],
        ["Explain Critical Temperature of Substance"],
        [{"text": "@qwen2-vl Transcription of the letter", "files": ["examples/222.png"]}],
        [{"text": "Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
        [{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
        [{"text": "Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
        [{"text": "Summarize the events in this video", "files": ["examples/sky.mp4"]}],
        [{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}],
        ["Python Program for Array Rotation"],
        ["Explain Critical Temperature of Substance"]
    ],
    cache_examples=False,
    type="messages",
    description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)