FLUX-REALISM / app.py
prithivMLmods's picture
Update app.py
5663d15 verified
raw
history blame
11.5 kB
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import subprocess
# Install flash-attn with our environment flag (if needed)
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
# Set torch backend configurations for Flux RealismLora
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# -------------------------------
# CONFIGURATION & UTILITY FUNCTIONS
# -------------------------------
MAX_SEED = 2**32 - 1
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return its path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for an animated progress bar with a given label.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFC0CB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -------------------------------
# FLUX REALISMLORA IMAGE GENERATION SETUP (New Implementation)
# -------------------------------
from diffusers import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "XLabs-AI/flux-RealismLora"
trigger_word = "" # No trigger word used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
@spaces.GPU()
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# Set random seed for reproducibility
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
# Update progress bar (0% at start)
progress(0, "Starting image generation...")
# Simulate progress updates during the steps
for i in range(1, steps + 1):
if steps >= 10 and i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
# Generate image using the pipeline
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Final progress update (100%)
progress(100, "Completed!")
yield image, seed
# -------------------------------
# SMOLVLM2 SETUP (Default Text/Multimodal Model)
# -------------------------------
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
smol_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
smol_model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.float16
).to("cuda:0")
# -------------------------------
# TTS UTILITY FUNCTIONS
# -------------------------------
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save the output as MP3."""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
# -------------------------------
# CHAT / MULTIMODAL GENERATION FUNCTION
# -------------------------------
@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict], max_tokens: int = 200):
"""
Generates chatbot responses using SmolVLM2 with support for multimodal inputs and TTS.
Special commands:
- "@image": triggers image generation using the RealismLora flux implementation.
- "@tts1" or "@tts2": triggers text-to-speech after generation.
"""
torch.cuda.empty_cache()
text = input_dict["text"]
files = input_dict.get("files", [])
# If the query starts with "@image", use RealismLora to generate an image.
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield progress_bar_html("Hold Tight Generating Flux RealismLora Image")
# Default parameters for RealismLora generation
default_cfg_scale = 3.2
default_steps = 32
default_width = 1152
default_height = 896
default_seed = 3981632454
default_lora_scale = 0.85
# Call the new run_lora function and yield its final result
for result in run_lora(prompt, default_cfg_scale, default_steps, True, default_seed, default_width, default_height, default_lora_scale, progress=gr.Progress(track_tqdm=True)):
final_result = result
yield gr.Image(final_result[0])
return
# Handle TTS commands if present.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice = None
if is_tts:
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
yield "Processing with SmolVLM2"
# Build conversation messages based on input and history.
user_content = []
media_queue = []
if chat_history == []:
text = text.strip()
for file in files:
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
else:
resulting_messages = []
user_content = []
media_queue = []
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], str):
txt = hist["content"]
parts = re.split(r'(<image>|<video>)', txt)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if not resulting_messages:
resulting_messages = [{"role": "user", "content": user_content}]
if text == "" and not files:
yield "Please input a query and optionally image(s)."
return
if text == "" and files:
yield "Please input a text query along with the image(s)."
return
inputs = smol_processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
inputs = inputs.to(smol_model.device)
streamer = TextIteratorStreamer(smol_processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
thread = Thread(target=smol_model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
if is_tts and voice:
final_response = buffer
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# -------------------------------
# GRADIO CHAT INTERFACE
# -------------------------------
DESCRIPTION = "# Flux RealismLora + SmolVLM2 Chat"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, this may not work as expected.</p>"
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens"),
],
examples=[
[{"text": "@image A futuristic cityscape at dusk in hyper-realistic style"}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "What does this document say?", "files": ["example_images/document.jpg"]}],
[{"text": "@tts1 Explain the weather patterns shown in this diagram.", "files": ["example_images/examples_weather_events.png"]}],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", ".mp4"],
file_count="multiple",
placeholder="Type text and/or upload media. Use '@image' for image gen, '@tts1' or '@tts2' for TTS."
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)