Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,539 Bytes
2230883 cbc2b17 2230883 ee317af 2230883 ee317af 2230883 ee317af 2230883 cbc2b17 2230883 cbc2b17 2230883 5663d15 cbc2b17 7d0e511 cbc2b17 5663d15 2230883 cbc2b17 ee317af 5663d15 7d0e511 5663d15 7d0e511 cbc2b17 ee317af 5663d15 ee317af 7d0e511 ee317af 5663d15 ee317af cbc2b17 ad4e69f cbc2b17 5663d15 cbc2b17 5663d15 cbc2b17 2230883 5663d15 2230883 5663d15 2230883 5663d15 cbc2b17 2230883 5663d15 2230883 5663d15 2230883 5663d15 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 ad4e69f 5663d15 cbc2b17 2230883 cbc2b17 2230883 cbc2b17 ee317af cbc2b17 2230883 cbc2b17 5663d15 cbc2b17 2230883 cbc2b17 2230883 5663d15 cbc2b17 2230883 cbc2b17 2230883 5663d15 2230883 dc7f40f ee317af 2230883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import subprocess
# Install flash-attn with our environment flag (if needed)
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
# Set torch backend configurations for Flux RealismLora
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# -------------------------------
# CONFIGURATION & UTILITY FUNCTIONS
# -------------------------------
MAX_SEED = 2**32 - 1
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return its path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for an animated progress bar with a given label.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFC0CB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -------------------------------
# FLUX REALISMLORA IMAGE GENERATION SETUP (New Implementation)
# -------------------------------
from diffusers import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "XLabs-AI/flux-RealismLora"
trigger_word = "" # No trigger word used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
@spaces.GPU()
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# Set random seed for reproducibility
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
# Update progress bar (0% at start)
progress(0, "Starting image generation...")
# Simulate progress updates during the steps
for i in range(1, steps + 1):
if steps >= 10 and i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
# Generate image using the pipeline
image = pipe(
prompt=f"{prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Final progress update (100%)
progress(100, "Completed!")
yield image, seed
# -------------------------------
# SMOLVLM2 SETUP (Default Text/Multimodal Model)
# -------------------------------
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
smol_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
smol_model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.float16
).to("cuda:0")
# -------------------------------
# TTS UTILITY FUNCTIONS
# -------------------------------
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save the output as MP3."""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
# -------------------------------
# CHAT / MULTIMODAL GENERATION FUNCTION
# -------------------------------
@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict], max_tokens: int = 200):
"""
Generates chatbot responses using SmolVLM2 with support for multimodal inputs and TTS.
Special commands:
- "@image": triggers image generation using the RealismLora flux implementation.
- "@tts1" or "@tts2": triggers text-to-speech after generation.
"""
torch.cuda.empty_cache()
text = input_dict["text"]
files = input_dict.get("files", [])
# If the query starts with "@image", use RealismLora to generate an image.
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield progress_bar_html("Hold Tight Generating Flux RealismLora Image")
# Default parameters for RealismLora generation
default_cfg_scale = 3.2
default_steps = 32
default_width = 1152
default_height = 896
default_seed = 3981632454
default_lora_scale = 0.85
# Call the new run_lora function and yield its final result
for result in run_lora(prompt, default_cfg_scale, default_steps, True, default_seed, default_width, default_height, default_lora_scale, progress=gr.Progress(track_tqdm=True)):
final_result = result
yield gr.Image(final_result[0])
return
# Handle TTS commands if present.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice = None
if is_tts:
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
yield "Processing with SmolVLM2"
# Build conversation messages based on input and history.
user_content = []
media_queue = []
if chat_history == []:
text = text.strip()
for file in files:
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
else:
resulting_messages = []
user_content = []
media_queue = []
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in chat_history:
if hist["role"] == "user" and isinstance(hist["content"], str):
txt = hist["content"]
parts = re.split(r'(<image>|<video>)', txt)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if not resulting_messages:
resulting_messages = [{"role": "user", "content": user_content}]
if text == "" and not files:
yield "Please input a query and optionally image(s)."
return
if text == "" and files:
yield "Please input a text query along with the image(s)."
return
inputs = smol_processor.apply_chat_template(
resulting_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
inputs = inputs.to(smol_model.device)
streamer = TextIteratorStreamer(smol_processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
thread = Thread(target=smol_model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
if is_tts and voice:
final_response = buffer
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# -------------------------------
# GRADIO CHAT INTERFACE
# -------------------------------
DESCRIPTION = "# Flux RealismLora + SmolVLM2 Chat"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️Running on CPU, this may not work as expected.</p>"
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens"),
],
examples=[
[{"text": "@image A futuristic cityscape at dusk in hyper-realistic style"}],
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
[{"text": "What does this document say?", "files": ["example_images/document.jpg"]}],
[{"text": "@tts1 Explain the weather patterns shown in this diagram.", "files": ["example_images/examples_weather_events.png"]}],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", ".mp4"],
file_count="multiple",
placeholder="Type text and/or upload media. Use '@image' for image gen, '@tts1' or '@tts2' for TTS."
),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |