File size: 38,482 Bytes
e336179
dddc2d6
098da17
a791c81
098da17
 
 
 
a791c81
b476d80
786abd0
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791c81
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448db76
9b6a59c
 
 
 
 
 
 
448db76
47bd2a1
 
 
 
 
 
 
5b930be
 
 
 
 
 
 
 
f5010fb
 
 
 
 
 
 
 
448db76
160409d
 
 
 
 
 
 
f5010fb
 
 
 
 
 
 
 
098da17
 
 
 
 
 
 
 
 
3aaf1a0
92ba8d3
3aaf1a0
 
 
 
 
92ba8d3
81dbe6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ba8d3
7e1389d
92ba8d3
 
 
 
 
81dbe6c
 
 
 
 
 
 
 
a5c693d
 
 
 
 
 
 
 
4efb8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47bd2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec53063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba09a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b6a59c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448db76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3c834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223d059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b930be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5010fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b930be
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791c81
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
a791c81
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a791c81
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea8e42b
098da17
 
 
 
 
 
 
 
 
 
 
 
 
b99ab2e
098da17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union

import torch
from PIL import Image
import gradio as gr

from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    AutoencoderKL,
    AutoPipelineForImage2Image,
    FluxPipeline,
    FlowMatchEulerDiscreteScheduler)

from huggingface_hub import (
    hf_hub_download,
    HfFileSystem,
    ModelCard,
    snapshot_download)

from diffusers.utils import load_image

import spaces

#---if workspace = local or colab---

# Authenticate with Hugging Face
# from huggingface_hub import login

# Log in to Hugging Face using the provided token
# hf_token = 'hf-token-authentication'
# login(hf_token)

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# FLUX pipeline
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()
        
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

#------------------------------------------------------------------------------------------------------------------------------------------------------------#
loras = [
    #24
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Claymation-XC-LoRA/resolve/main/images/4.png",
        "title": "Claymation XC",
        "repo": "strangerzonehf/Flux-Claymation-XC-LoRA",
        "weights": "Claymation.safetensors",
        "trigger_word": "Claymation"    
    },
    #25
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Icon-Kit-LoRA/resolve/main/images/1.png",
        "title": "Icon Kit",
        "repo": "strangerzonehf/Flux-Icon-Kit-LoRA",
        "weights": "Icon-Kit.safetensors",
        "trigger_word": "Icon Kit"    
    },
    #43
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Cardboard-Art-LoRA/resolve/main/images/6.png",
        "title": "Cardboard Art V1",
        "repo": "strangerzonehf/Flux-Cardboard-Art-LoRA",
        "weights": "cardboard# art.safetensors",
        "trigger_word": "cardboard# art"    
    },
    #53
    {
        "image": "https://huggingface.co/fofr/flux-condensation/resolve/main/images/example_crzf2b8xi.png",
        "title": "Condensation",
        "repo": "fofr/flux-condensation",
        "weights": "lora.safetensors",
        "trigger_word": "CONDENSATION"    
    },
    #26
    {
        "image": "https://huggingface.co/strangerzonehf/Gem-Touch-LoRA-Flux/resolve/main/images/333.png",
        "title": "Gem Touch LoRA",
        "repo": "strangerzonehf/Gem-Touch-LoRA-Flux",
        "weights": "GemTouch.safetensors",
        "trigger_word": "Gem Touch"    
    },
    #54
    {
        "image": "https://huggingface.co/AiAF/D-ART-18DART5_LoRA_Flux1/resolve/main/samples_2000-4000/1735935528010__000004000_3.jpg",
        "title": "D-ART Anime",
        "repo": "AiAF/D-ART-18DART5_LoRA_Flux1",
        "weights": "D-ART-Flux1.safetensors",
        "trigger_word": "D-ART \(Artist\), @18dart5, @18dart3, @18dart2, and/or @18dart1"    
    },
    #1
    {
        "image": "https://huggingface.co/strangerzonehf/CMS-3D-Art/resolve/main/images/33.png",
        "title": "CMS 3D Art",
        "repo": "strangerzonehf/CMS-3D-Art",
        "weights": "CMS-3D-Art.safetensors",
        "trigger_word": "CMS 3D Art"    
    },
    #2
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Ultimate-LoRA-Collection/resolve/main/images/image.png",
        "title": "AWPortraitCN2",
        "repo": "Shakker-Labs/AWPortraitCN2",
        "weights": "AWPortraitCN_2.safetensors",
        "trigger_word": ""    
    },
    #3
    {
        "image": "https://huggingface.co/strangerzonehf/3d-Station-Toon/resolve/main/images/5555.png",
        "title": "3d Station Toon",
        "repo": "strangerzonehf/3d-Station-Toon",
        "weights": "3d station toon.safetensors",
        "trigger_word": "3d station toon"    
    },
    #4
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Master-Claymation/resolve/main/images/6.png",
        "title": "Master Claymation",
        "repo": "strangerzonehf/Flux-Master-Claymation",
        "weights": "Master-Claymation.safetensors",
        "trigger_word": "Master Claymation"    
    },
    #5
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Ultimate-LoRA-Collection/resolve/main/images/image2.png",
        "title": "AWPortraitCN",
        "repo": "Shakker-Labs/AWPortraitCN",
        "weights": "AWPortraitCN.safetensors",
        "trigger_word": ""    
    },
    #6
    {
        "image": "https://huggingface.co/strangerzonehf/333-PRO/resolve/main/images/111.png",
        "title": "333 PRO",
        "repo": "strangerzonehf/333-PRO",
        "weights": "333-Pro.safetensors",
        "trigger_word": "333 Pro Sketch"    
    },
    #7
    {
        "image": "https://huggingface.co/strangerzonehf/BnW-Expressions-Flux/resolve/main/images/111.png",
        "title": "BnW Expressions",
        "repo": "strangerzonehf/BnW-Expressions-Flux",
        "weights": "BnW-Expressions.safetensors",
        "trigger_word": "BnW Expressions"    
    },
    #8
    {
        "image": "https://huggingface.co/strangerzonehf/2DAura-Flux/resolve/main/images/666.png",
        "title": "2DAura Flux",
        "repo": "strangerzonehf/2DAura-Flux",
        "weights": "2DAura.safetensors",
        "trigger_word": "2D Aura"    
    },
    #9
    {
        "image": "https://huggingface.co/strangerzonehf/FallenArt-Flux/resolve/main/images/222.png",
        "title": "Fallen Art",
        "repo": "strangerzonehf/FallenArt-Flux",
        "weights": "FallenArt.safetensors",
        "trigger_word": "Fallen Art"    
    },
    #10
    {
        "image": "https://huggingface.co/strangerzonehf/Cardboard-v2-Flux/resolve/main/images/111.png",
        "title": "Cardboard-v2-Flux",
        "repo": "strangerzonehf/Cardboard-v2-Flux",
        "weights": "Cardboard-v2.safetensors",
        "trigger_word": "Cardboard v2"    
    },
    #11
    {
        "image": "https://huggingface.co/strangerzonehf/Qx-Art/resolve/main/images/2.png",
        "title": "Qx Art",
        "repo": "strangerzonehf/Qx-Art",
        "weights": "Qx-Art.safetensors",
        "trigger_word": "Qx-Art"    
    },
    #12
    {
        "image": "https://huggingface.co/strangerzonehf/Realism-H6-Flux/resolve/main/images/3333.png",
        "title": "Realism H6 Flux",
        "repo": "strangerzonehf/Realism-H6-Flux",
        "weights": "Realism H6.safetensors",
        "trigger_word": "Realism H6"    
    },
    #13
    {
        "image": "https://huggingface.co/strangerzonehf/Qs-Sketch/resolve/main/images/5.png",
        "title": "Qs Sketch",
        "repo": "strangerzonehf/Qs-Sketch",
        "weights": "Qs Sketch.safetensors",
        "trigger_word": "Qs Sketch"    
    },
    #14
    {
        "image": "https://huggingface.co/strangerzonehf/Qc-Sketch/resolve/main/images/1.png",
        "title": "Qc Sketch",
        "repo": "strangerzonehf/Qc-Sketch",
        "weights": "Qc-Sketch.safetensors",
        "trigger_word": "Qc-Sketch"    
    },
    #15
    {
        "image": "https://huggingface.co/strangerzonehf/Qw-Sketch/resolve/main/images/4.png",
        "title": "Qw Sketch",
        "repo": "strangerzonehf/Qw-Sketch",
        "weights": "Qw-Sketch.safetensors",
        "trigger_word": "Qw Sketch"    
    },
    #16
    {
        "image": "https://huggingface.co/strangerzonehf/Thread-of-Art-Flux/resolve/main/images/1111.png",
        "title": "Thread of Art",
        "repo": "strangerzonehf/Thread-of-Art-Flux",
        "weights": "Thread-of-Art.safetensors",
        "trigger_word": "Thread of Art"    
    },
    #17
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Automotive-X2-LoRA/resolve/main/images/1.png",
        "title": "Automotive X2",
        "repo": "strangerzonehf/Flux-Automotive-X2-LoRA",
        "weights": "Automotive-X2.safetensors",
        "trigger_word": "Automotive X2"    
    },
    #18
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Automotive-X1-LoRA/resolve/main/images/3.png",
        "title": "Automotive X1",
        "repo": "strangerzonehf/Flux-Automotive-X1-LoRA",
        "weights": "Automotive-X1.safetensors",
        "trigger_word": "Automotive X1"    
    },
    #19
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Partfile-0001/resolve/main/images/4.png",
        "title": "3DXLP1",
        "repo": "strangerzonehf/Flux-3DXL-Partfile-0001",
        "weights": "3DXLP1.safetensors",
        "trigger_word": "3DXLP1"    
    },
    #20
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Partfile-0002/resolve/main/images/44.png",
        "title": "3DXLP2",
        "repo": "strangerzonehf/Flux-3DXL-Partfile-0002",
        "weights": "3DXLP2.safetensors",
        "trigger_word": "3DXLP2"    
    },
    #21
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Partfile-0003/resolve/main/images/222.png",
        "title": "3DXLP3",
        "repo": "strangerzonehf/Flux-3DXL-Partfile-0003",
        "weights": "3DXLP3.safetensors",
        "trigger_word": "3DXLP3"    
    },
    #22
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Partfile-0004/resolve/main/images/4444.png",
        "title": "3DXLP4",
        "repo": "strangerzonehf/Flux-3DXL-Partfile-0004",
        "weights": "3DXLP4.safetensors",
        "trigger_word": "3DXLP4"    
    },
    #23
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Isometric-3D-Cinematography/resolve/main/images/IS1.png",
        "title": "Isometric 3D",
        "repo": "strangerzonehf/Flux-Isometric-3D-Cinematography",
        "weights": "Isometric-3D-Cinematography.safetensors",
        "trigger_word": "Isometric 3D Cinematography"    
    },
    #27
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Microworld-NFT-LoRA/resolve/main/images/4.png",
        "title": "Microworld NFT",
        "repo": "strangerzonehf/Flux-Microworld-NFT-LoRA",
        "weights": "Microworld-NFT.safetensors",
        "trigger_word": "Microworld NFT"    
    },
    #28
    {
        "image": "https://huggingface.co/strangerzonehf/NFT-Plus-InsideOut-Perspective/resolve/main/images/2.png",
        "title": "NFT ++",
        "repo": "strangerzonehf/NFT-Plus-InsideOut-Perspective",
        "weights": "NFT-Plus-InsideOut-Perspective.safetensors",
        "trigger_word": "NFT ++"    
    },
    #29
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Ghibli-Art-LoRA/resolve/main/images/8.png",
        "title": "Half Ghibli",
        "repo": "strangerzonehf/Flux-Ghibli-Art-LoRA",
        "weights": "Ghibli-Art.safetensors",
        "trigger_word": "Ghibli Art"    
    },
    #30
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix-LoRA/resolve/main/images/mj10.png",
        "title": "Midjourney Mix",
        "repo": "strangerzonehf/Flux-Midjourney-Mix-LoRA",
        "weights": "midjourney-mix.safetensors",
        "trigger_word": "midjourney mix"    
    },
    #31
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Creative-Stocks-LoRA/resolve/main/images/6.png",
        "title": "Creative Stocks",
        "repo": "strangerzonehf/Flux-Creative-Stocks-LoRA",
        "weights": "Creative-Stocks.safetensors",
        "trigger_word": "Creative Stocks"    
    },
    #32
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Pixel-Background-LoRA/resolve/main/images/2.png",
        "title": "Flux Pixel",
        "repo": "strangerzonehf/Flux-Pixel-Background-LoRA",
        "weights": "Pixel-Background.safetensors",
        "trigger_word": "Pixel Background"    
    },
    #33
    {
        "image": "https://huggingface.co/strangerzonehf/Multi-perspective-Art-Flux/resolve/main/images/1.png",
        "title": "Multi Perspective Art",
        "repo": "strangerzonehf/Multi-perspective-Art-Flux",
        "weights": "Multi-perspective Art .safetensors",
        "trigger_word": "Multi-perspective Art"    
    },
    #34
    {
        "image": "https://huggingface.co/strangerzonehf/Neon-Impressionism-Flux/resolve/main/images/4.png",
        "title": "Neon Impressionism Flux",
        "repo": "strangerzonehf/Neon-Impressionism-Flux",
        "weights": "Neon Impressionism.safetensors",
        "trigger_word": "Neon Impressionism"    
    },
    #35
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Partfile-0006/resolve/main/images/555.png",
        "title": "3DXLP6",
        "repo": "strangerzonehf/Flux-3DXL-Partfile-0006",
        "weights": "3DXLP6.safetensors",
        "trigger_word": "3DXLP6"    
    },
    #36
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-3DXL-Garment-Mannequin/resolve/main/images/2.png",
        "title": "Garment Mannequin",
        "repo": "strangerzonehf/Flux-3DXL-Garment-Mannequin",
        "weights": "3DXL-Mannequin.safetensors",
        "trigger_word": "3DXL Mannequin"    
    },
    #37
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Xmas-3D-LoRA/resolve/main/images/3.png",
        "title": "Xmas 3D",
        "repo": "strangerzonehf/Flux-Xmas-3D-LoRA",
        "weights": "Flux-Xmas-3D-LoRA.safetensors",
        "trigger_word": "Xmas 3D"    
    },
    #38
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Xmas-Chocolate-LoRA/resolve/main/images/2.png",
        "title": "Xmas Chocolate",
        "repo": "strangerzonehf/Flux-Xmas-Chocolate-LoRA",
        "weights": "Flux-Xmas-Chocolate.safetensors",
        "trigger_word": "Xmas Chocolate"    
    },
    #39
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Xmas-Isometric-Kit-LoRA/resolve/main/images/4.png",
        "title": "Xmas Isometric Kit",
        "repo": "strangerzonehf/Flux-Xmas-Isometric-Kit-LoRA",
        "weights": "Xmas-Isometric-Kit.safetensors",
        "trigger_word": "Xmas Isometric Kit"    
    },
    #40
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-Isometric-Site-LoRA/resolve/main/images/1.png",
        "title": "Flux Isometric Site",
        "repo": "strangerzonehf/Flux-Isometric-Site-LoRA",
        "weights": "Isometric-Building.safetensors",
        "trigger_word": "Isometric Building"    
    },
    #41
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-NFT-Art99-LoRA/resolve/main/images/2.png",
        "title": "NFT Art 99",
        "repo": "strangerzonehf/Flux-NFT-Art99-LoRA",
        "weights": "NFT-Art-99.safetensors",
        "trigger_word": "NFT Art 99"    
    },
    #42
    {
        "image": "https://huggingface.co/strangerzonehf/2021-Art-Flux/resolve/main/images/2222.png",
        "title": "2021 Art",
        "repo": "strangerzonehf/2021-Art-Flux",
        "weights": "2021-Art.safetensors",
        "trigger_word": "2021 Art"    
    },
    #44
    {
        "image": "https://huggingface.co/strangerzonehf/New-Journey-Art-Flux/resolve/main/images/3333.png",
        "title": "New Journey Art",
        "repo": "strangerzonehf/New-Journey-Art-Flux",
        "weights": "New-Journey-Art.safetensors",
        "trigger_word": "New Journey Art"    
    },
    #45
    {
        "image": "https://huggingface.co/strangerzonehf/Casual-Pencil-Pro/resolve/main/images/333.png",
        "title": "Casual Pencil",
        "repo": "strangerzonehf/Casual-Pencil-Pro",
        "weights": "CasualPencil.safetensors",
        "trigger_word": "Casual Pencil"    
    },
    #46
    {
        "image": "https://huggingface.co/strangerzonehf/Real-Claymation/resolve/main/images/1.png",
        "title": "Real Claymation",
        "repo": "strangerzonehf/Real-Claymation",
        "weights": "Real-Claymation.safetensors",
        "trigger_word": "Real Claymation"    
    },
    #47
    {
        "image": "https://huggingface.co/strangerzonehf/Embroidery-Art-Flux/resolve/main/images/6.png",
        "title": "Embroidery Art",
        "repo": "strangerzonehf/Embroidery-Art-Flux",
        "weights": "embroidery art.safetensors",
        "trigger_word": "embroidery art"    
    },
    #48
    {
        "image": "https://huggingface.co/strangerzonehf/Whaaaattttt-Flux/resolve/main/images/10.png",
        "title": "Whaaattt Art",
        "repo": "strangerzonehf/Whaaaattttt-Flux",
        "weights": "Whaaattt Art.safetensors",
        "trigger_word": "Whaaattt Art"    
    },
    #49
    {
        "image": "https://huggingface.co/strangerzonehf/Oil-Wall-Art-Flux/resolve/main/images/1.png",
        "title": "Oil Wall Art Flux",
        "repo": "strangerzonehf/Oil-Wall-Art-Flux",
        "weights": "oil-art.safetensors",
        "trigger_word": "oil art"    
    },
    #50
    {
        "image": "https://huggingface.co/fffiloni/deep-blue-v2/resolve/main/images/example_0o2puhiae.png",
        "title": "Deep Blue",
        "repo": "fffiloni/deep-blue-v2",
        "weights": "deep-blue-v2.safetensors",
        "trigger_word": "deep blue, white lines illustration"    
    },
    #51
    {
        "image": "https://huggingface.co/fffiloni/cozy-book-800/resolve/main/images/example_zza0rj1uq.png",
        "title": "Cozy Book 800",
        "repo": "fffiloni/cozy-book-800",
        "weights": "cozy-book-800.safetensors",
        "trigger_word": "in the style of TOK"    
    },
    #52
    {
        "image": "https://huggingface.co/kudzueye/Boreal/resolve/main/images/ComfyUI_00822_.png",
        "title": "Boreal",
        "repo": "kudzueye/Boreal",
        "weights": "boreal-flux-dev-lora-v04_1000_steps.safetensors",
        "trigger_word": "photo"    
    },
    #55
    {
        "image": "https://huggingface.co/strangerzonehf/Flux-St-Shot/resolve/main/images/1.png",
        "title": "Portrait",
        "repo": "strangerzonehf/Flux-St-Shot",
        "weights": "st portrait.safetensors",
        "trigger_word": "st portrait"    
    },


]

#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=100)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
        output_type="pil",
    ).images[0]
    return final_image 

@spaces.GPU(duration=100)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()
        
    #LoRA weights flow
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        pipe_to_use = pipe_i2i if image_input is not None else pipe
        weight_name = selected_lora.get("weights", None)
        
        pipe_to_use.load_lora_weights(
            lora_path, 
            weight_name=weight_name, 
            low_cpu_mem_usage=True
        )
            
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
    if(image_input is not None):
        
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
    
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter+=1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
            
        yield final_image, seed, gr.update(value=progress_bar, visible=False)
        
def get_huggingface_safetensors(link):
  split_link = link.split("/")
  if(len(split_link) == 2):
            model_card = ModelCard.load(link)
            base_model = model_card.data.get("base_model")
            print(base_model)
      
            #Allows Both
            if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
                raise Exception("Flux LoRA Not Found!")
                
            # Only allow "black-forest-labs/FLUX.1-dev"
            #if base_model != "black-forest-labs/FLUX.1-dev":
                #raise Exception("Only FLUX.1-dev is supported, other LoRA models are not allowed!")
                
            image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
            trigger_word = model_card.data.get("instance_prompt", "")
            image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
            fs = HfFileSystem()
            try:
                list_of_files = fs.ls(link, detail=False)
                for file in list_of_files:
                    if(file.endswith(".safetensors")):
                        safetensors_name = file.split("/")[-1]
                    if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
                      image_elements = file.split("/")
                      image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
            except Exception as e:
              print(e)
              gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
              raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if(link.startswith("https://")):
        if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if(custom_lora):
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if(not existing_item_index):
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)
        
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=False), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''

with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
        """<h1>FLUX LoRA DLC2🔥</h1>""",
        elem_id="title",
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ choose the LoRA and type the prompt ")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="100+ LoRA DLC's",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
                gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress",visible=False)
            result = gr.Image(label="Generated Image", format="png")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch(ssr_mode=False)