Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
import edge_tts | |
import asyncio | |
import tempfile | |
css = ''' | |
.gradio-container { | |
max-width: 1000px !important; | |
background-color: #000 !important; | |
color: #0f0 !important; | |
font-family: monospace !important; | |
padding: 20px !important; | |
border-radius: 5px !important; | |
border: 10px solid #333 !important; | |
box-shadow: 0 0 20px #0f0 !important; | |
} | |
h1 { | |
text-align: center; | |
color: #0f0 !important; | |
text-shadow: 0 0 5px #0f0 !important; | |
} | |
footer { | |
visibility: hidden; | |
} | |
textarea, input, .output { | |
background-color: #000 !important; | |
color: #0f0 !important; | |
border: 1px solid #0f0 !important; | |
font-family: monospace !important; | |
} | |
button { | |
background-color: #0f0 !important; | |
color: #000 !important; | |
border: none !important; | |
font-family: monospace !important; | |
} | |
button:hover { | |
background-color: #090 !important; | |
} | |
.audio { | |
width: 100%; | |
margin-top: 20px; | |
} | |
''' | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
async def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Convert the response to speech using Edge TTS | |
communicate = edge_tts.Communicate(response) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
yield tmp_path | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message", lines=2), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
), | |
], | |
css=css, | |
title="Old TV Terminal Chat", | |
description="Welcome to the Old TV Terminal. Type your message below.", | |
additional_outputs=[gr.Audio(label="Generated Speech", autoplay=True)] | |
) | |
if __name__ == "__main__": | |
demo.launch() |