Spaces:
Running
Running
File size: 2,949 Bytes
fdb09b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
from openai import OpenAI
import os
import edge_tts
import asyncio
import tempfile
css = '''
.gradio-container {
max-width: 1000px !important;
background-color: #000 !important;
color: #0f0 !important;
font-family: monospace !important;
padding: 20px !important;
border-radius: 5px !important;
border: 10px solid #333 !important;
box-shadow: 0 0 20px #0f0 !important;
}
h1 {
text-align: center;
color: #0f0 !important;
text-shadow: 0 0 5px #0f0 !important;
}
footer {
visibility: hidden;
}
textarea, input, .output {
background-color: #000 !important;
color: #0f0 !important;
border: 1px solid #0f0 !important;
font-family: monospace !important;
}
button {
background-color: #0f0 !important;
color: #000 !important;
border: none !important;
font-family: monospace !important;
}
button:hover {
background-color: #090 !important;
}
.audio {
width: 100%;
margin-top: 20px;
}
'''
ACCESS_TOKEN = os.getenv("HF_TOKEN")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
async def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
# Convert the response to speech using Edge TTS
communicate = edge_tts.Communicate(response)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message", lines=2),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
),
],
css=css,
title="Old TV Terminal Chat",
description="Welcome to the Old TV Terminal. Type your message below.",
additional_outputs=[gr.Audio(label="Generated Speech", autoplay=True)]
)
if __name__ == "__main__":
demo.launch() |