File size: 22,532 Bytes
a85c4cf
 
 
 
 
 
a29f7c2
a165b0a
a29f7c2
573a8ee
218cef6
a85c4cf
 
 
 
 
 
 
a29f7c2
40825af
a85c4cf
e84f6e6
 
 
 
a85c4cf
 
 
 
 
 
 
 
a29f7c2
a85c4cf
a29f7c2
a165b0a
a29f7c2
40825af
a29f7c2
 
 
 
 
 
 
a85c4cf
a29f7c2
 
 
 
 
 
40825af
a29f7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a165b0a
a29f7c2
 
 
 
 
 
 
 
 
 
 
 
a165b0a
a29f7c2
 
 
 
 
 
 
 
 
 
 
40825af
218cef6
 
 
 
 
 
 
40825af
 
218cef6
 
 
 
 
40825af
218cef6
 
 
 
 
035efc4
40825af
 
 
218cef6
 
 
 
40825af
 
218cef6
 
 
 
 
 
40825af
 
 
218cef6
 
035efc4
218cef6
 
 
 
40825af
 
 
035efc4
40825af
14bfced
 
 
 
 
 
 
 
 
cdb6c59
40825af
 
 
 
 
14bfced
 
d5c677b
14bfced
 
 
 
 
 
 
 
 
40825af
 
 
 
 
 
14bfced
 
40825af
 
 
218cef6
40825af
a85c4cf
 
 
40825af
7edb1fe
a85c4cf
 
 
 
 
 
 
 
40825af
 
a85c4cf
 
 
 
 
 
 
40825af
 
 
 
 
 
 
 
 
 
 
a85c4cf
40825af
035efc4
a85c4cf
 
 
 
 
 
 
 
 
40825af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85c4cf
 
 
 
 
 
7b24dc9
 
a85c4cf
 
7b24dc9
a85c4cf
7b24dc9
 
 
 
a85c4cf
7b24dc9
 
 
a85c4cf
 
7b24dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
40825af
7b24dc9
40825af
 
 
7b24dc9
 
 
 
 
 
 
 
a85c4cf
c44519e
 
 
 
 
 
 
 
 
 
 
 
a29f7c2
e84f6e6
 
 
 
 
 
 
 
 
 
40825af
2bd3ee0
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
40825af
a29f7c2
 
40825af
a29f7c2
 
 
 
 
 
 
573a8ee
 
 
 
 
 
f485ff1
a29f7c2
 
40825af
a85c4cf
 
14bfced
a85c4cf
 
 
 
 
 
 
a29f7c2
a85c4cf
40825af
218cef6
 
 
 
14bfced
218cef6
 
 
 
 
40825af
218cef6
 
 
 
 
40825af
14bfced
 
40825af
14bfced
 
 
 
40825af
e84f6e6
40825af
e84f6e6
40825af
e84f6e6
 
 
40825af
e84f6e6
 
 
 
 
 
 
 
40825af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85c4cf
 
 
40825af
a85c4cf
 
 
 
 
 
 
 
 
40825af
a85c4cf
40825af
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
40825af
a85c4cf
14bfced
a85c4cf
 
 
 
 
 
 
 
 
40825af
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40825af
a85c4cf
 
 
 
40825af
a85c4cf
 
40825af
a85c4cf
 
 
 
40825af
 
 
 
 
 
 
 
 
 
 
 
1947a01
 
 
 
 
40825af
1947a01
 
 
 
 
377ae75
1947a01
e84f6e6
377ae75
40825af
 
7b24dc9
40825af
 
1947a01
 
 
 
 
 
40825af
 
 
 
 
 
1947a01
 
 
56aa407
f76444e
 
49d0c17
f76444e
1947a01
56aa407
a85c4cf
56aa407
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import os
import random
import uuid
import json
import time
import asyncio
import tempfile
from threading import Thread
import base64
import shutil
import re

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import trimesh
import soundfile as sf  # Added for audio processing with Phi-4

import supervision as sv
from ultralytics import YOLO as YOLODetector
from huggingface_hub import hf_hub_download

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image

from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply

# Global constants and helper functions

MAX_SEED = np.iinfo(np.int32).max

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def glb_to_data_url(glb_path: str) -> str:
    with open(glb_path, "rb") as f:
        data = f.read()
    b64_data = base64.b64encode(data).decode("utf-8")
    return f"data:model/gltf-binary;base64,{b64_data}"

# Model class for Text-to-3D Generation (ShapE)

class Model:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
        self.pipe.to(self.device)
        if torch.cuda.is_available():
            try:
                self.pipe.text_encoder = self.pipe.text_encoder.half()
            except AttributeError:
                pass

        self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
        self.pipe_img.to(self.device)
        if torch.cuda.is_available():
            text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
            if text_encoder_img is not None:
                self.pipe_img.text_encoder = text_encoder_img.half()

    def to_glb(self, ply_path: str) -> str:
        mesh = trimesh.load(ply_path)
        rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
        mesh.apply_transform(rot)
        rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
        mesh.apply_transform(rot)
        mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
        mesh.export(mesh_path.name, file_type="glb")
        return mesh_path.name

    def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe(
            prompt,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

    def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe_img(
            image,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

# Web Tools using DuckDuckGo and smolagents

from typing import Any, Optional
from smolagents.tools import Tool
import duckduckgo_search

class DuckDuckGoSearchTool(Tool):
    name = "web_search"
    description = "Performs a duckduckgo web search and returns the top results."
    inputs = {'query': {'type': 'string', 'description': 'The search query.'}}
    output_type = "string"

    def __init__(self, max_results=10, **kwargs):
        super().__init__()
        self.max_results = max_results
        from duckduckgo_search import DDGS
        self.ddgs = DDGS(**kwargs)

    def forward(self, query: str) -> str:
        results = self.ddgs.text(query, max_results=self.max_results)
        if len(results) == 0:
            raise Exception("No results found! Try a less restrictive query.")
        postprocessed_results = [
            f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
        ]
        return "## Search Results\n\n" + "\n\n".join(postprocessed_results)

class VisitWebpageTool(Tool):
    name = "visit_webpage"
    description = "Visits a webpage and returns its content as markdown."
    inputs = {'url': {'type': 'string', 'description': 'The URL to visit.'}}
    output_type = "string"

    def __init__(self, *args, **kwargs):
        self.is_initialized = False

    def forward(self, url: str) -> str:
        import requests
        from markdownify import markdownify
        from smolagents.utils import truncate_content
        try:
            response = requests.get(url, timeout=20)
            response.raise_for_status()
            markdown_content = markdownify(response.text).strip()
            markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
            return truncate_content(markdown_content, 10000)
        except requests.exceptions.Timeout:
            return "The request timed out."
        except requests.exceptions.RequestException as e:
            return f"Error fetching webpage: {str(e)}"

# rAgent Reasoning using Llama mode OpenAI

from openai import OpenAI

ACCESS_TOKEN = os.getenv("HF_TOKEN")
ragent_client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

SYSTEM_PROMPT = """
"You are an expert assistant who solves tasks using Python code. Follow these steps:
1. **Thought**: Explain your reasoning and plan.
2. **Code**: Write Python code to implement your solution.
3. **Observation**: Analyze the output and summarize results.
4. **Final Answer**: Provide a concise conclusion."
"""

def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
    messages = [{"role": "system", "content": SYSTEM_PROMPT}]
    for msg in history:
        if msg.get("role") == "user":
            messages.append({"role": "user", "content": msg["content"]})
        elif msg.get("role") == "assistant":
            messages.append({"role": "assistant", "content": msg["content"]})
    messages.append({"role": "user", "content": prompt})
    response = ""
    stream = ragent_client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        messages=messages,
    )
    for message in stream:
        token = message.choices[0].delta.content
        response += token
        yield response

# Load Models

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Text-only model
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Multimodal model (Qwen2-VL)
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# Phi-4 Multimodal Model
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
phi4_model = AutoModelForCausalLM.from_pretrained(
    phi4_model_path,
    device_map="auto",
    torch_dtype="auto",
    trust_remote_code=True,
    _attn_implementation="eager",
)
phi4_model.eval()

# Stable Diffusion XL Pipeline
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()

# YOLO Object Detection
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
YOLO_CHECKPOINT_NAME = "images/demo.pt"
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
yolo_detector = YOLODetector(yolo_model_path)

# TTS Voices
TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"]

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Utility Functions

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

def save_image(img: Image.Image) -> str:
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    for i in range(0, num_images, 1):  # Simplified batching
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+1]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"]:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+1]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

@spaces.GPU(duration=120, enable_queue=True)
def generate_3d_fn(
    prompt: str,
    seed: int = 1,
    guidance_scale: float = 15.0,
    num_steps: int = 64,
    randomize_seed: bool = False,
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    model3d = Model()
    glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
    return glb_path, seed

def detect_objects(image: np.ndarray):
    results = yolo_detector(image, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results).with_nms()
    box_annotator = sv.BoxAnnotator()
    label_annotator = sv.LabelAnnotator()
    annotated_image = image.copy()
    annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
    annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
    return Image.fromarray(annotated_image)

# Chat Generation Function with @phi4 Added

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # --- 3D Generation ---
    if text.strip().lower().startswith("@3d"):
        prompt = text[len("@3d"):].strip()
        yield "πŸŒ€ Generating 3D mesh GLB file..."
        glb_path, used_seed = generate_3d_fn(
            prompt=prompt,
            seed=1,
            guidance_scale=15.0,
            num_steps=64,
            randomize_seed=True,
        )
        static_folder = os.path.join(os.getcwd(), "static")
        if not os.path.exists(static_folder):
            os.makedirs(static_folder)
        new_filename = f"mesh_{uuid.uuid4()}.glb"
        new_filepath = os.path.join(static_folder, new_filename)
        shutil.copy(glb_path, new_filepath)
        yield gr.File(new_filepath)
        return

    # --- Image Generation ---
    if text.strip().lower().startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield "πŸͺ§ Generating image..."
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            seed=1,
            randomize_seed=True,
            num_images=1,
        )
        yield gr.Image(image_paths[0])
        return

    # --- Web Search/Visit ---
    if text.strip().lower().startswith("@web"):
        web_command = text[len("@web"):].strip()
        if web_command.lower().startswith("visit"):
            url = web_command[len("visit"):].strip()
            yield "🌍 Visiting webpage..."
            visitor = VisitWebpageTool()
            content = visitor.forward(url)
            yield content
        else:
            query = web_command
            yield "🧀 Performing web search..."
            searcher = DuckDuckGoSearchTool()
            results = searcher.forward(query)
            yield results
        return

    # --- rAgent Reasoning ---
    if text.strip().lower().startswith("@ragent"):
        prompt = text[len("@ragent"):].strip()
        yield "πŸ“ Initiating reasoning chain..."
        for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
            yield partial
        return

    # --- YOLO Object Detection ---
    if text.strip().lower().startswith("@yolo"):
        yield "πŸ” Running object detection..."
        if not files or len(files) == 0:
            yield "Error: Please attach an image for YOLO."
            return
        input_file = files[0]
        try:
            pil_image = Image.open(input_file)
        except Exception as e:
            yield f"Error loading image: {str(e)}"
            return
        np_image = np.array(pil_image)
        result_img = detect_objects(np_image)
        yield gr.Image(result_img)
        return

    # --- Phi-4 Multimodal Branch ---
    if text.strip().lower().startswith("@phi4"):
        parts = text[len("@phi4"):].strip().split(maxsplit=1)
        if len(parts) < 2:
            yield "Error: Specify input type and question, e.g., '@phi4 image What is this?'"
            return
        input_type = parts[0].lower()
        question = parts[1]

        if input_type not in ["image", "audio"]:
            yield "Error: Input type must be 'image' or 'audio'."
            return

        if not files or len(files) == 0:
            yield "Error: Please attach a file for Phi-4 processing."
            return

        if len(files) > 1:
            yield "Warning: Multiple files attached. Using the first one."

        file_input = files[0]

        try:
            if input_type == "image":
                prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>'
                image = Image.open(file_input)
                inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
            elif input_type == "audio":
                prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>'
                audio, samplerate = sf.read(file_input)
                inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)

            streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = {
                **inputs,
                "streamer": streamer,
                "max_new_tokens": max_new_tokens,
            }
            thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
            thread.start()

            buffer = ""
            yield "πŸ€” Thinking..."
            for new_text in streamer:
                buffer += new_text
                buffer = buffer.replace("<|im_end|>", "")
                time.sleep(0.01)
                yield buffer
        except Exception as e:
            yield f"Error processing file: {str(e)}"
        return

    # --- Text and TTS Branch ---
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)

    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if files:
        images = [load_image(image) for image in files]
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield "πŸ€” Thinking..."
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input to {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

# Gradio Interface

DESCRIPTION = """
# Agent Dino 🌠
Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection.
"""

css = '''
h1 { text-align: center; }
#duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; }
'''

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@tts2 What causes rainbows to form?"],
        ["@image Chocolate dripping from a donut"],
        ["@3d A birthday cupcake with cherry"],
        [{"text": "Summarize the letter", "files": ["examples/1.png"]}],
        [{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
        ["@rAgent Explain how a binary search algorithm works."],
        ["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"],
        ["@tts1 Explain Tower of Hanoi"],
        [{"text": "@phi4 image What is shown in this image?", "files": ["examples/image.jpg"]}],
        [{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(
        label="Query Input",
        file_types=["image", "audio"],
        file_count="multiple",
        placeholder="@tts1-♀, @tts2-β™‚, @image-image gen, @3d-3d mesh gen, @rAgent-coding, @web-websearch, @yolo-object detection, @phi4-multimodal, default-{text gen}{image-text-text}",
    ),
    stop_btn="Stop Generation",
    multimodal=True,
)

if not os.path.exists("static"):
    os.makedirs("static")

from fastapi.staticfiles import StaticFiles
demo.app.mount("/static", StaticFiles(directory="static"), name="static")

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)