Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,532 Bytes
a85c4cf a29f7c2 a165b0a a29f7c2 573a8ee 218cef6 a85c4cf a29f7c2 40825af a85c4cf e84f6e6 a85c4cf a29f7c2 a85c4cf a29f7c2 a165b0a a29f7c2 40825af a29f7c2 a85c4cf a29f7c2 40825af a29f7c2 a165b0a a29f7c2 a165b0a a29f7c2 40825af 218cef6 40825af 218cef6 40825af 218cef6 035efc4 40825af 218cef6 40825af 218cef6 40825af 218cef6 035efc4 218cef6 40825af 035efc4 40825af 14bfced cdb6c59 40825af 14bfced d5c677b 14bfced 40825af 14bfced 40825af 218cef6 40825af a85c4cf 40825af 7edb1fe a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af 035efc4 a85c4cf 40825af a85c4cf 7b24dc9 a85c4cf 7b24dc9 a85c4cf 7b24dc9 a85c4cf 7b24dc9 a85c4cf 7b24dc9 40825af 7b24dc9 40825af 7b24dc9 a85c4cf c44519e a29f7c2 e84f6e6 40825af 2bd3ee0 a85c4cf 40825af a29f7c2 40825af a29f7c2 573a8ee f485ff1 a29f7c2 40825af a85c4cf 14bfced a85c4cf a29f7c2 a85c4cf 40825af 218cef6 14bfced 218cef6 40825af 218cef6 40825af 14bfced 40825af 14bfced 40825af e84f6e6 40825af e84f6e6 40825af e84f6e6 40825af e84f6e6 40825af a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af a85c4cf 14bfced a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af a85c4cf 40825af 1947a01 40825af 1947a01 377ae75 1947a01 e84f6e6 377ae75 40825af 7b24dc9 40825af 1947a01 40825af 1947a01 56aa407 f76444e 49d0c17 f76444e 1947a01 56aa407 a85c4cf 56aa407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
import os
import random
import uuid
import json
import time
import asyncio
import tempfile
from threading import Thread
import base64
import shutil
import re
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import trimesh
import soundfile as sf # Added for audio processing with Phi-4
import supervision as sv
from ultralytics import YOLO as YOLODetector
from huggingface_hub import hf_hub_download
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply
# Global constants and helper functions
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def glb_to_data_url(glb_path: str) -> str:
with open(glb_path, "rb") as f:
data = f.read()
b64_data = base64.b64encode(data).decode("utf-8")
return f"data:model/gltf-binary;base64,{b64_data}"
# Model class for Text-to-3D Generation (ShapE)
class Model:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
self.pipe.to(self.device)
if torch.cuda.is_available():
try:
self.pipe.text_encoder = self.pipe.text_encoder.half()
except AttributeError:
pass
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
self.pipe_img.to(self.device)
if torch.cuda.is_available():
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
if text_encoder_img is not None:
self.pipe_img.text_encoder = text_encoder_img.half()
def to_glb(self, ply_path: str) -> str:
mesh = trimesh.load(ply_path)
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
mesh.apply_transform(rot)
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
mesh.apply_transform(rot)
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
mesh.export(mesh_path.name, file_type="glb")
return mesh_path.name
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe(
prompt,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
generator = torch.Generator(device=self.device).manual_seed(seed)
images = self.pipe_img(
image,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
output_type="mesh",
).images
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
export_to_ply(images[0], ply_path.name)
return self.to_glb(ply_path.name)
# Web Tools using DuckDuckGo and smolagents
from typing import Any, Optional
from smolagents.tools import Tool
import duckduckgo_search
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = "Performs a duckduckgo web search and returns the top results."
inputs = {'query': {'type': 'string', 'description': 'The search query.'}}
output_type = "string"
def __init__(self, max_results=10, **kwargs):
super().__init__()
self.max_results = max_results
from duckduckgo_search import DDGS
self.ddgs = DDGS(**kwargs)
def forward(self, query: str) -> str:
results = self.ddgs.text(query, max_results=self.max_results)
if len(results) == 0:
raise Exception("No results found! Try a less restrictive query.")
postprocessed_results = [
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
]
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage and returns its content as markdown."
inputs = {'url': {'type': 'string', 'description': 'The URL to visit.'}}
output_type = "string"
def __init__(self, *args, **kwargs):
self.is_initialized = False
def forward(self, url: str) -> str:
import requests
from markdownify import markdownify
from smolagents.utils import truncate_content
try:
response = requests.get(url, timeout=20)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out."
except requests.exceptions.RequestException as e:
return f"Error fetching webpage: {str(e)}"
# rAgent Reasoning using Llama mode OpenAI
from openai import OpenAI
ACCESS_TOKEN = os.getenv("HF_TOKEN")
ragent_client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
SYSTEM_PROMPT = """
"You are an expert assistant who solves tasks using Python code. Follow these steps:
1. **Thought**: Explain your reasoning and plan.
2. **Code**: Write Python code to implement your solution.
3. **Observation**: Analyze the output and summarize results.
4. **Final Answer**: Provide a concise conclusion."
"""
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
for msg in history:
if msg.get("role") == "user":
messages.append({"role": "user", "content": msg["content"]})
elif msg.get("role") == "assistant":
messages.append({"role": "assistant", "content": msg["content"]})
messages.append({"role": "user", "content": prompt})
response = ""
stream = ragent_client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
)
for message in stream:
token = message.choices[0].delta.content
response += token
yield response
# Load Models
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Text-only model
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Multimodal model (Qwen2-VL)
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Phi-4 Multimodal Model
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
phi4_model = AutoModelForCausalLM.from_pretrained(
phi4_model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
_attn_implementation="eager",
)
phi4_model.eval()
# Stable Diffusion XL Pipeline
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
# YOLO Object Detection
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
YOLO_CHECKPOINT_NAME = "images/demo.pt"
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
yolo_detector = YOLODetector(yolo_model_path)
# TTS Voices
TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"]
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Utility Functions
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 1,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
num_inference_steps: int = 25,
randomize_seed: bool = False,
use_resolution_binning: bool = True,
num_images: int = 1,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator(device=device).manual_seed(seed)
options = {
"prompt": [prompt] * num_images,
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
for i in range(0, num_images, 1): # Simplified batching
batch_options = options.copy()
batch_options["prompt"] = options["prompt"][i:i+1]
if "negative_prompt" in batch_options and batch_options["negative_prompt"]:
batch_options["negative_prompt"] = options["negative_prompt"][i:i+1]
if device.type == "cuda":
with torch.autocast("cuda", dtype=torch.float16):
outputs = sd_pipe(**batch_options)
else:
outputs = sd_pipe(**batch_options)
images.extend(outputs.images)
image_paths = [save_image(img) for img in images]
return image_paths, seed
@spaces.GPU(duration=120, enable_queue=True)
def generate_3d_fn(
prompt: str,
seed: int = 1,
guidance_scale: float = 15.0,
num_steps: int = 64,
randomize_seed: bool = False,
):
seed = int(randomize_seed_fn(seed, randomize_seed))
model3d = Model()
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
return glb_path, seed
def detect_objects(image: np.ndarray):
results = yolo_detector(image, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results).with_nms()
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
annotated_image = image.copy()
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
return Image.fromarray(annotated_image)
# Chat Generation Function with @phi4 Added
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
# --- 3D Generation ---
if text.strip().lower().startswith("@3d"):
prompt = text[len("@3d"):].strip()
yield "π Generating 3D mesh GLB file..."
glb_path, used_seed = generate_3d_fn(
prompt=prompt,
seed=1,
guidance_scale=15.0,
num_steps=64,
randomize_seed=True,
)
static_folder = os.path.join(os.getcwd(), "static")
if not os.path.exists(static_folder):
os.makedirs(static_folder)
new_filename = f"mesh_{uuid.uuid4()}.glb"
new_filepath = os.path.join(static_folder, new_filename)
shutil.copy(glb_path, new_filepath)
yield gr.File(new_filepath)
return
# --- Image Generation ---
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield "πͺ§ Generating image..."
image_paths, used_seed = generate_image_fn(
prompt=prompt,
seed=1,
randomize_seed=True,
num_images=1,
)
yield gr.Image(image_paths[0])
return
# --- Web Search/Visit ---
if text.strip().lower().startswith("@web"):
web_command = text[len("@web"):].strip()
if web_command.lower().startswith("visit"):
url = web_command[len("visit"):].strip()
yield "π Visiting webpage..."
visitor = VisitWebpageTool()
content = visitor.forward(url)
yield content
else:
query = web_command
yield "π§€ Performing web search..."
searcher = DuckDuckGoSearchTool()
results = searcher.forward(query)
yield results
return
# --- rAgent Reasoning ---
if text.strip().lower().startswith("@ragent"):
prompt = text[len("@ragent"):].strip()
yield "π Initiating reasoning chain..."
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
yield partial
return
# --- YOLO Object Detection ---
if text.strip().lower().startswith("@yolo"):
yield "π Running object detection..."
if not files or len(files) == 0:
yield "Error: Please attach an image for YOLO."
return
input_file = files[0]
try:
pil_image = Image.open(input_file)
except Exception as e:
yield f"Error loading image: {str(e)}"
return
np_image = np.array(pil_image)
result_img = detect_objects(np_image)
yield gr.Image(result_img)
return
# --- Phi-4 Multimodal Branch ---
if text.strip().lower().startswith("@phi4"):
parts = text[len("@phi4"):].strip().split(maxsplit=1)
if len(parts) < 2:
yield "Error: Specify input type and question, e.g., '@phi4 image What is this?'"
return
input_type = parts[0].lower()
question = parts[1]
if input_type not in ["image", "audio"]:
yield "Error: Input type must be 'image' or 'audio'."
return
if not files or len(files) == 0:
yield "Error: Please attach a file for Phi-4 processing."
return
if len(files) > 1:
yield "Warning: Multiple files attached. Using the first one."
file_input = files[0]
try:
if input_type == "image":
prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>'
image = Image.open(file_input)
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
elif input_type == "audio":
prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>'
audio, samplerate = sf.read(file_input)
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
}
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "π€ Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
except Exception as e:
yield f"Error processing file: {str(e)}"
return
# --- Text and TTS Branch ---
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
images = [load_image(image) for image in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield "π€ Thinking..."
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input to {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# Gradio Interface
DESCRIPTION = """
# Agent Dino π
Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection.
"""
css = '''
h1 { text-align: center; }
#duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; }
'''
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@tts2 What causes rainbows to form?"],
["@image Chocolate dripping from a donut"],
["@3d A birthday cupcake with cherry"],
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
["@rAgent Explain how a binary search algorithm works."],
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"],
["@tts1 Explain Tower of Hanoi"],
[{"text": "@phi4 image What is shown in this image?", "files": ["examples/image.jpg"]}],
[{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
css=css,
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "audio"],
file_count="multiple",
placeholder="@tts1-β, @tts2-β, @image-image gen, @3d-3d mesh gen, @rAgent-coding, @web-websearch, @yolo-object detection, @phi4-multimodal, default-{text gen}{image-text-text}",
),
stop_btn="Stop Generation",
multimodal=True,
)
if not os.path.exists("static"):
os.makedirs("static")
from fastapi.staticfiles import StaticFiles
demo.app.mount("/static", StaticFiles(directory="static"), name="static")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |