Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -39,9 +39,14 @@ from diffusers.utils import export_to_ply
|
|
39 |
# Additional import for Phi-4 multimodality (audio support)
|
40 |
import soundfile as sf
|
41 |
|
|
|
42 |
os.system('pip install backoff')
|
43 |
|
44 |
-
#
|
|
|
|
|
|
|
|
|
45 |
|
46 |
MAX_SEED = np.iinfo(np.int32).max
|
47 |
|
@@ -53,35 +58,30 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
53 |
def glb_to_data_url(glb_path: str) -> str:
|
54 |
"""
|
55 |
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
56 |
-
(Not used in this method.)
|
57 |
"""
|
58 |
with open(glb_path, "rb") as f:
|
59 |
data = f.read()
|
60 |
b64_data = base64.b64encode(data).decode("utf-8")
|
61 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
62 |
|
63 |
-
def
|
64 |
"""
|
65 |
-
|
66 |
-
Otherwise,
|
67 |
"""
|
68 |
if isinstance(file, str):
|
69 |
-
|
70 |
-
elif hasattr(file, "name"):
|
71 |
-
return file.name
|
72 |
-
elif isinstance(file, dict) and "name" in file:
|
73 |
-
return file["name"]
|
74 |
else:
|
75 |
-
|
|
|
76 |
|
77 |
-
# Model class for Text-to-3D Generation (ShapE)
|
78 |
|
79 |
class Model:
|
80 |
def __init__(self):
|
81 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
83 |
self.pipe.to(self.device)
|
84 |
-
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
85 |
if torch.cuda.is_available():
|
86 |
try:
|
87 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
@@ -90,7 +90,6 @@ class Model:
|
|
90 |
|
91 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
92 |
self.pipe_img.to(self.device)
|
93 |
-
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
94 |
if torch.cuda.is_available():
|
95 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
96 |
if text_encoder_img is not None:
|
@@ -98,7 +97,6 @@ class Model:
|
|
98 |
|
99 |
def to_glb(self, ply_path: str) -> str:
|
100 |
mesh = trimesh.load(ply_path)
|
101 |
-
# Rotate the mesh for proper orientation
|
102 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
103 |
mesh.apply_transform(rot)
|
104 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
@@ -133,7 +131,7 @@ class Model:
|
|
133 |
export_to_ply(images[0], ply_path.name)
|
134 |
return self.to_glb(ply_path.name)
|
135 |
|
136 |
-
# New Tools for Web Functionality using DuckDuckGo and smolagents
|
137 |
|
138 |
from typing import Any, Optional
|
139 |
from smolagents.tools import Tool
|
@@ -141,7 +139,7 @@ import duckduckgo_search
|
|
141 |
|
142 |
class DuckDuckGoSearchTool(Tool):
|
143 |
name = "web_search"
|
144 |
-
description = "Performs a duckduckgo web search based on your query
|
145 |
inputs = {'query': {'type': 'string', 'description': 'The search query to perform.'}}
|
146 |
output_type = "string"
|
147 |
|
@@ -151,24 +149,20 @@ class DuckDuckGoSearchTool(Tool):
|
|
151 |
try:
|
152 |
from duckduckgo_search import DDGS
|
153 |
except ImportError as e:
|
154 |
-
raise ImportError(
|
155 |
-
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
|
156 |
-
) from e
|
157 |
self.ddgs = DDGS(**kwargs)
|
158 |
|
159 |
def forward(self, query: str) -> str:
|
160 |
results = self.ddgs.text(query, max_results=self.max_results)
|
161 |
if len(results) == 0:
|
162 |
-
raise Exception("No results found! Try a less restrictive
|
163 |
-
postprocessed_results = [
|
164 |
-
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
|
165 |
-
]
|
166 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
167 |
|
168 |
class VisitWebpageTool(Tool):
|
169 |
name = "visit_webpage"
|
170 |
-
description = "Visits a webpage at the given
|
171 |
-
inputs = {'url': {'type': 'string', 'description': 'The
|
172 |
output_type = "string"
|
173 |
|
174 |
def __init__(self, *args, **kwargs):
|
@@ -179,33 +173,23 @@ class VisitWebpageTool(Tool):
|
|
179 |
import requests
|
180 |
from markdownify import markdownify
|
181 |
from requests.exceptions import RequestException
|
182 |
-
|
183 |
from smolagents.utils import truncate_content
|
184 |
except ImportError as e:
|
185 |
-
raise ImportError(
|
186 |
-
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
|
187 |
-
) from e
|
188 |
try:
|
189 |
-
# Send a GET request to the URL with a 20-second timeout
|
190 |
response = requests.get(url, timeout=20)
|
191 |
-
response.raise_for_status()
|
192 |
-
|
193 |
-
# Convert the HTML content to Markdown
|
194 |
markdown_content = markdownify(response.text).strip()
|
195 |
-
|
196 |
-
# Remove multiple line breaks
|
197 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
198 |
-
|
199 |
return truncate_content(markdown_content, 10000)
|
200 |
-
|
201 |
except requests.exceptions.Timeout:
|
202 |
-
return "The request timed out. Please try again later
|
203 |
except RequestException as e:
|
204 |
return f"Error fetching the webpage: {str(e)}"
|
205 |
except Exception as e:
|
206 |
-
return f"
|
207 |
-
|
208 |
-
# rAgent Reasoning using Llama mode OpenAI
|
209 |
|
210 |
from openai import OpenAI
|
211 |
|
@@ -216,22 +200,17 @@ ragent_client = OpenAI(
|
|
216 |
)
|
217 |
|
218 |
SYSTEM_PROMPT = """
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
"""
|
228 |
|
229 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
230 |
-
"""
|
231 |
-
Uses the Llama mode OpenAI model to perform a structured reasoning chain.
|
232 |
-
"""
|
233 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
234 |
-
# Incorporate conversation history (if any)
|
235 |
for msg in history:
|
236 |
if msg.get("role") == "user":
|
237 |
messages.append({"role": "user", "content": msg["content"]})
|
@@ -252,17 +231,17 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
252 |
response += token
|
253 |
yield response
|
254 |
|
255 |
-
# Gradio UI configuration
|
256 |
|
257 |
DESCRIPTION = """
|
258 |
-
# Agent Dino π
|
|
|
259 |
|
260 |
css = '''
|
261 |
h1 {
|
262 |
text-align: center;
|
263 |
display: block;
|
264 |
}
|
265 |
-
|
266 |
#duplicate-button {
|
267 |
margin: auto;
|
268 |
color: #fff;
|
@@ -277,9 +256,7 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
277 |
|
278 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
279 |
|
280 |
-
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
281 |
-
# Load the text-only model and tokenizer (for pure text chat)
|
282 |
-
|
283 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
284 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
285 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -289,13 +266,11 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
289 |
)
|
290 |
model.eval()
|
291 |
|
292 |
-
# Voices for text-to-speech
|
293 |
TTS_VOICES = [
|
294 |
-
"en-US-JennyNeural",
|
295 |
-
"en-US-GuyNeural",
|
296 |
]
|
297 |
|
298 |
-
# Load multimodal processor and model (e.g. for OCR and image processing)
|
299 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
300 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
301 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -304,35 +279,23 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
304 |
torch_dtype=torch.float16
|
305 |
).to("cuda").eval()
|
306 |
|
307 |
-
# Asynchronous text-to-speech
|
308 |
-
|
309 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
310 |
-
"""Convert text to speech using Edge TTS and save as MP3"""
|
311 |
communicate = edge_tts.Communicate(text, voice)
|
312 |
await communicate.save(output_file)
|
313 |
return output_file
|
314 |
|
315 |
-
# Utility function to clean conversation history
|
316 |
-
|
317 |
def clean_chat_history(chat_history):
|
318 |
-
"""
|
319 |
-
Filter out any chat entries whose "content" is not a string.
|
320 |
-
This helps prevent errors when concatenating previous messages.
|
321 |
-
"""
|
322 |
cleaned = []
|
323 |
for msg in chat_history:
|
324 |
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
325 |
cleaned.append(msg)
|
326 |
return cleaned
|
327 |
|
328 |
-
|
329 |
-
#Model In Use : SG161222/RealVisXL_V5.0_Lightning
|
330 |
-
|
331 |
-
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
332 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
333 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
334 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
335 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
336 |
|
337 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
338 |
MODEL_ID_SD,
|
@@ -341,18 +304,14 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
341 |
add_watermarker=False,
|
342 |
).to(device)
|
343 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
344 |
-
|
345 |
if torch.cuda.is_available():
|
346 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
347 |
-
|
348 |
if USE_TORCH_COMPILE:
|
349 |
sd_pipe.compile()
|
350 |
-
|
351 |
if ENABLE_CPU_OFFLOAD:
|
352 |
sd_pipe.enable_model_cpu_offload()
|
353 |
|
354 |
def save_image(img: Image.Image) -> str:
|
355 |
-
"""Save a PIL image with a unique filename and return the path."""
|
356 |
unique_name = str(uuid.uuid4()) + ".png"
|
357 |
img.save(unique_name)
|
358 |
return unique_name
|
@@ -372,10 +331,8 @@ def generate_image_fn(
|
|
372 |
num_images: int = 1,
|
373 |
progress=gr.Progress(track_tqdm=True),
|
374 |
):
|
375 |
-
"""Generate images using the SDXL pipeline."""
|
376 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
377 |
generator = torch.Generator(device=device).manual_seed(seed)
|
378 |
-
|
379 |
options = {
|
380 |
"prompt": [prompt] * num_images,
|
381 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -388,9 +345,7 @@ def generate_image_fn(
|
|
388 |
}
|
389 |
if use_resolution_binning:
|
390 |
options["use_resolution_binning"] = True
|
391 |
-
|
392 |
images = []
|
393 |
-
# Process in batches
|
394 |
for i in range(0, num_images, BATCH_SIZE):
|
395 |
batch_options = options.copy()
|
396 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
@@ -405,8 +360,6 @@ def generate_image_fn(
|
|
405 |
image_paths = [save_image(img) for img in images]
|
406 |
return image_paths, seed
|
407 |
|
408 |
-
# Text-to-3D Generation using the ShapE Pipeline
|
409 |
-
|
410 |
@spaces.GPU(duration=120, enable_queue=True)
|
411 |
def generate_3d_fn(
|
412 |
prompt: str,
|
@@ -415,39 +368,28 @@ def generate_3d_fn(
|
|
415 |
num_steps: int = 64,
|
416 |
randomize_seed: bool = False,
|
417 |
):
|
418 |
-
"""
|
419 |
-
Generate a 3D model from text using the ShapE pipeline.
|
420 |
-
Returns a tuple of (glb_file_path, used_seed).
|
421 |
-
"""
|
422 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
423 |
model3d = Model()
|
424 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
425 |
return glb_path, seed
|
426 |
|
427 |
-
# YOLO Object Detection Setup
|
428 |
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
429 |
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
430 |
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
431 |
yolo_detector = YOLODetector(yolo_model_path)
|
432 |
|
433 |
def detect_objects(image: np.ndarray):
|
434 |
-
"""Runs object detection on the input image."""
|
435 |
results = yolo_detector(image, verbose=False)[0]
|
436 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
437 |
-
|
438 |
box_annotator = sv.BoxAnnotator()
|
439 |
label_annotator = sv.LabelAnnotator()
|
440 |
-
|
441 |
annotated_image = image.copy()
|
442 |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
443 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
444 |
-
|
445 |
return Image.fromarray(annotated_image)
|
446 |
|
447 |
-
# Phi-4 Multimodal Model Setup with Text Streaming
|
448 |
-
|
449 |
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
450 |
-
|
451 |
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
452 |
phi4_model = AutoModelForCausalLM.from_pretrained(
|
453 |
phi4_model_path,
|
@@ -457,11 +399,10 @@ phi4_model = AutoModelForCausalLM.from_pretrained(
|
|
457 |
_attn_implementation="eager",
|
458 |
)
|
459 |
|
460 |
-
def process_phi4(input_type: str, file, question: str, max_new_tokens: int = 200):
|
461 |
"""
|
462 |
Process an image or audio input with the Phi-4 multimodal model.
|
463 |
-
|
464 |
-
Expects input_type to be either 'image' or 'audio'.
|
465 |
"""
|
466 |
user_prompt = '<|user|>'
|
467 |
assistant_prompt = '<|assistant|>'
|
@@ -471,24 +412,22 @@ def process_phi4(input_type: str, file, question: str, max_new_tokens: int = 200
|
|
471 |
yield "Please upload a file and provide a question."
|
472 |
return
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
yield "Invalid input type selected."
|
489 |
return
|
490 |
|
491 |
-
# Setup text streamer using TextIteratorStreamer for incremental generation
|
492 |
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
493 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
494 |
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
@@ -501,8 +440,6 @@ def process_phi4(input_type: str, file, question: str, max_new_tokens: int = 200
|
|
501 |
time.sleep(0.01)
|
502 |
yield buffer
|
503 |
|
504 |
-
# Chat Generation Function with support for @tts, @image, @3d, @web, @ragent, @yolo, and now @phi4 commands
|
505 |
-
|
506 |
@spaces.GPU
|
507 |
def generate(
|
508 |
input_dict: dict,
|
@@ -514,19 +451,54 @@ def generate(
|
|
514 |
repetition_penalty: float = 1.2,
|
515 |
):
|
516 |
"""
|
517 |
-
Generates chatbot responses with support for multimodal input and special commands
|
518 |
-
|
519 |
-
- "@
|
520 |
-
- "@
|
521 |
-
- "@
|
522 |
-
- "@
|
523 |
-
- "@
|
524 |
-
-
|
|
|
525 |
"""
|
526 |
text = input_dict["text"]
|
527 |
files = input_dict.get("files", [])
|
528 |
|
529 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
530 |
if text.strip().lower().startswith("@3d"):
|
531 |
prompt = text[len("@3d"):].strip()
|
532 |
yield "π Hold tight, generating a 3D mesh GLB file....."
|
@@ -537,18 +509,15 @@ def generate(
|
|
537 |
num_steps=64,
|
538 |
randomize_seed=True,
|
539 |
)
|
540 |
-
# Copy the GLB file to a static folder.
|
541 |
static_folder = os.path.join(os.getcwd(), "static")
|
542 |
if not os.path.exists(static_folder):
|
543 |
os.makedirs(static_folder)
|
544 |
new_filename = f"mesh_{uuid.uuid4()}.glb"
|
545 |
new_filepath = os.path.join(static_folder, new_filename)
|
546 |
shutil.copy(glb_path, new_filepath)
|
547 |
-
|
548 |
yield gr.File(new_filepath)
|
549 |
return
|
550 |
|
551 |
-
# --- Image Generation branch ---
|
552 |
if text.strip().lower().startswith("@image"):
|
553 |
prompt = text[len("@image"):].strip()
|
554 |
yield "πͺ§ Generating image..."
|
@@ -568,7 +537,6 @@ def generate(
|
|
568 |
yield gr.Image(image_paths[0])
|
569 |
return
|
570 |
|
571 |
-
# --- Web Search/Visit branch ---
|
572 |
if text.strip().lower().startswith("@web"):
|
573 |
web_command = text[len("@web"):].strip()
|
574 |
if web_command.lower().startswith("visit"):
|
@@ -585,7 +553,6 @@ def generate(
|
|
585 |
yield results
|
586 |
return
|
587 |
|
588 |
-
# --- rAgent Reasoning branch ---
|
589 |
if text.strip().lower().startswith("@ragent"):
|
590 |
prompt = text[len("@ragent"):].strip()
|
591 |
yield "π Initiating reasoning chain using Llama mode..."
|
@@ -593,7 +560,6 @@ def generate(
|
|
593 |
yield partial
|
594 |
return
|
595 |
|
596 |
-
# --- YOLO Object Detection branch ---
|
597 |
if text.strip().lower().startswith("@yolo"):
|
598 |
yield "π Running object detection with YOLO..."
|
599 |
if not files or len(files) == 0:
|
@@ -604,7 +570,7 @@ def generate(
|
|
604 |
if isinstance(input_file, str):
|
605 |
pil_image = Image.open(input_file)
|
606 |
else:
|
607 |
-
pil_image = Image.open(
|
608 |
except Exception as e:
|
609 |
yield f"Error loading image: {str(e)}"
|
610 |
return
|
@@ -613,28 +579,9 @@ def generate(
|
|
613 |
yield gr.Image(result_img)
|
614 |
return
|
615 |
|
616 |
-
# --- Phi-4 Multimodal branch with text streaming ---
|
617 |
-
if text.strip().lower().startswith("@phi4"):
|
618 |
-
parts = text.strip().split(maxsplit=2)
|
619 |
-
if len(parts) < 3:
|
620 |
-
yield "Error: Please provide input type and a question. Format: '@phi4 [image|audio] <your question>'"
|
621 |
-
return
|
622 |
-
input_type = parts[1]
|
623 |
-
question = parts[2]
|
624 |
-
if not files or len(files) == 0:
|
625 |
-
yield "Error: Please attach an image or audio file for Phi-4 processing."
|
626 |
-
return
|
627 |
-
file_input = files[0]
|
628 |
-
yield "π Processing multimodal input with Phi-4..."
|
629 |
-
for partial in process_phi4(input_type, file_input, question):
|
630 |
-
yield partial
|
631 |
-
return
|
632 |
-
|
633 |
-
# --- Text and TTS branch ---
|
634 |
tts_prefix = "@tts"
|
635 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
636 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
637 |
-
|
638 |
if is_tts and voice_index:
|
639 |
voice = TTS_VOICES[voice_index - 1]
|
640 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
@@ -644,12 +591,11 @@ def generate(
|
|
644 |
text = text.replace(tts_prefix, "").strip()
|
645 |
conversation = clean_chat_history(chat_history)
|
646 |
conversation.append({"role": "user", "content": text})
|
647 |
-
|
648 |
if files:
|
649 |
if len(files) > 1:
|
650 |
-
images = [load_image(
|
651 |
elif len(files) == 1:
|
652 |
-
images = [load_image(
|
653 |
else:
|
654 |
images = []
|
655 |
messages = [{
|
@@ -665,7 +611,6 @@ def generate(
|
|
665 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
666 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
667 |
thread.start()
|
668 |
-
|
669 |
buffer = ""
|
670 |
yield "π€ Thinking..."
|
671 |
for new_text in streamer:
|
@@ -693,21 +638,16 @@ def generate(
|
|
693 |
}
|
694 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
695 |
t.start()
|
696 |
-
|
697 |
outputs = []
|
698 |
for new_text in streamer:
|
699 |
outputs.append(new_text)
|
700 |
yield "".join(outputs)
|
701 |
-
|
702 |
final_response = "".join(outputs)
|
703 |
yield final_response
|
704 |
-
|
705 |
if is_tts and voice:
|
706 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
707 |
yield gr.Audio(output_file, autoplay=True)
|
708 |
|
709 |
-
# Gradio Chat Interface Setup and Launch
|
710 |
-
|
711 |
demo = gr.ChatInterface(
|
712 |
fn=generate,
|
713 |
additional_inputs=[
|
@@ -739,7 +679,6 @@ demo = gr.ChatInterface(
|
|
739 |
multimodal=True,
|
740 |
)
|
741 |
|
742 |
-
# Ensure the static folder exists
|
743 |
if not os.path.exists("static"):
|
744 |
os.makedirs("static")
|
745 |
|
|
|
39 |
# Additional import for Phi-4 multimodality (audio support)
|
40 |
import soundfile as sf
|
41 |
|
42 |
+
# Install additional dependencies if needed
|
43 |
os.system('pip install backoff')
|
44 |
|
45 |
+
# --- File validation constants ---
|
46 |
+
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
|
47 |
+
AUDIO_EXTENSIONS = ['.wav', '.mp3', '.flac', '.ogg']
|
48 |
+
|
49 |
+
# --- Global constants and helper functions ---
|
50 |
|
51 |
MAX_SEED = np.iinfo(np.int32).max
|
52 |
|
|
|
58 |
def glb_to_data_url(glb_path: str) -> str:
|
59 |
"""
|
60 |
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
|
|
61 |
"""
|
62 |
with open(glb_path, "rb") as f:
|
63 |
data = f.read()
|
64 |
b64_data = base64.b64encode(data).decode("utf-8")
|
65 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
66 |
|
67 |
+
def load_audio_file(file):
|
68 |
"""
|
69 |
+
Loads an audio file. If file is a string path, it reads directly.
|
70 |
+
Otherwise, assumes file is a file-like object.
|
71 |
"""
|
72 |
if isinstance(file, str):
|
73 |
+
audio, samplerate = sf.read(file)
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
+
audio, samplerate = sf.read(BytesIO(file.read()))
|
76 |
+
return audio, samplerate
|
77 |
|
78 |
+
# --- Model class for Text-to-3D Generation (ShapE) ---
|
79 |
|
80 |
class Model:
|
81 |
def __init__(self):
|
82 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
83 |
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
84 |
self.pipe.to(self.device)
|
|
|
85 |
if torch.cuda.is_available():
|
86 |
try:
|
87 |
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
|
|
90 |
|
91 |
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
92 |
self.pipe_img.to(self.device)
|
|
|
93 |
if torch.cuda.is_available():
|
94 |
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
95 |
if text_encoder_img is not None:
|
|
|
97 |
|
98 |
def to_glb(self, ply_path: str) -> str:
|
99 |
mesh = trimesh.load(ply_path)
|
|
|
100 |
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
101 |
mesh.apply_transform(rot)
|
102 |
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
|
|
131 |
export_to_ply(images[0], ply_path.name)
|
132 |
return self.to_glb(ply_path.name)
|
133 |
|
134 |
+
# --- New Tools for Web Functionality using DuckDuckGo and smolagents ---
|
135 |
|
136 |
from typing import Any, Optional
|
137 |
from smolagents.tools import Tool
|
|
|
139 |
|
140 |
class DuckDuckGoSearchTool(Tool):
|
141 |
name = "web_search"
|
142 |
+
description = "Performs a duckduckgo web search based on your query then returns the top search results."
|
143 |
inputs = {'query': {'type': 'string', 'description': 'The search query to perform.'}}
|
144 |
output_type = "string"
|
145 |
|
|
|
149 |
try:
|
150 |
from duckduckgo_search import DDGS
|
151 |
except ImportError as e:
|
152 |
+
raise ImportError("Install duckduckgo-search via pip.") from e
|
|
|
|
|
153 |
self.ddgs = DDGS(**kwargs)
|
154 |
|
155 |
def forward(self, query: str) -> str:
|
156 |
results = self.ddgs.text(query, max_results=self.max_results)
|
157 |
if len(results) == 0:
|
158 |
+
raise Exception("No results found! Try a less restrictive query.")
|
159 |
+
postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results]
|
|
|
|
|
160 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
161 |
|
162 |
class VisitWebpageTool(Tool):
|
163 |
name = "visit_webpage"
|
164 |
+
description = "Visits a webpage at the given URL and returns its content as markdown."
|
165 |
+
inputs = {'url': {'type': 'string', 'description': 'The URL of the webpage to visit.'}}
|
166 |
output_type = "string"
|
167 |
|
168 |
def __init__(self, *args, **kwargs):
|
|
|
173 |
import requests
|
174 |
from markdownify import markdownify
|
175 |
from requests.exceptions import RequestException
|
|
|
176 |
from smolagents.utils import truncate_content
|
177 |
except ImportError as e:
|
178 |
+
raise ImportError("Install markdownify and requests via pip.") from e
|
|
|
|
|
179 |
try:
|
|
|
180 |
response = requests.get(url, timeout=20)
|
181 |
+
response.raise_for_status()
|
|
|
|
|
182 |
markdown_content = markdownify(response.text).strip()
|
|
|
|
|
183 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
|
|
184 |
return truncate_content(markdown_content, 10000)
|
|
|
185 |
except requests.exceptions.Timeout:
|
186 |
+
return "The request timed out. Please try again later."
|
187 |
except RequestException as e:
|
188 |
return f"Error fetching the webpage: {str(e)}"
|
189 |
except Exception as e:
|
190 |
+
return f"Unexpected error: {str(e)}"
|
191 |
+
|
192 |
+
# --- rAgent Reasoning using Llama mode OpenAI ---
|
193 |
|
194 |
from openai import OpenAI
|
195 |
|
|
|
200 |
)
|
201 |
|
202 |
SYSTEM_PROMPT = """
|
203 |
+
"You are an expert assistant who solves tasks using Python code. Follow these steps:
|
204 |
+
1. Thought: Explain your reasoning and plan.
|
205 |
+
2. Code: Write Python code to implement your solution.
|
206 |
+
3. Observation: Analyze the output.
|
207 |
+
4. Final Answer: Provide a concise conclusion.
|
208 |
+
|
209 |
+
Task: {task}"
|
|
|
210 |
"""
|
211 |
|
212 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
|
|
|
|
|
|
213 |
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
|
|
214 |
for msg in history:
|
215 |
if msg.get("role") == "user":
|
216 |
messages.append({"role": "user", "content": msg["content"]})
|
|
|
231 |
response += token
|
232 |
yield response
|
233 |
|
234 |
+
# --- Gradio UI configuration ---
|
235 |
|
236 |
DESCRIPTION = """
|
237 |
+
# Agent Dino π
|
238 |
+
"""
|
239 |
|
240 |
css = '''
|
241 |
h1 {
|
242 |
text-align: center;
|
243 |
display: block;
|
244 |
}
|
|
|
245 |
#duplicate-button {
|
246 |
margin: auto;
|
247 |
color: #fff;
|
|
|
256 |
|
257 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
258 |
|
259 |
+
# --- Load Models and Pipelines for Chat, Image, and Multimodal Processing ---
|
|
|
|
|
260 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
261 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
262 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
266 |
)
|
267 |
model.eval()
|
268 |
|
|
|
269 |
TTS_VOICES = [
|
270 |
+
"en-US-JennyNeural",
|
271 |
+
"en-US-GuyNeural",
|
272 |
]
|
273 |
|
|
|
274 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
275 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
276 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
279 |
torch_dtype=torch.float16
|
280 |
).to("cuda").eval()
|
281 |
|
|
|
|
|
282 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
|
283 |
communicate = edge_tts.Communicate(text, voice)
|
284 |
await communicate.save(output_file)
|
285 |
return output_file
|
286 |
|
|
|
|
|
287 |
def clean_chat_history(chat_history):
|
|
|
|
|
|
|
|
|
288 |
cleaned = []
|
289 |
for msg in chat_history:
|
290 |
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
291 |
cleaned.append(msg)
|
292 |
return cleaned
|
293 |
|
294 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
|
|
|
|
|
|
295 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
296 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
297 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
298 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
299 |
|
300 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
301 |
MODEL_ID_SD,
|
|
|
304 |
add_watermarker=False,
|
305 |
).to(device)
|
306 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
|
307 |
if torch.cuda.is_available():
|
308 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
|
|
309 |
if USE_TORCH_COMPILE:
|
310 |
sd_pipe.compile()
|
|
|
311 |
if ENABLE_CPU_OFFLOAD:
|
312 |
sd_pipe.enable_model_cpu_offload()
|
313 |
|
314 |
def save_image(img: Image.Image) -> str:
|
|
|
315 |
unique_name = str(uuid.uuid4()) + ".png"
|
316 |
img.save(unique_name)
|
317 |
return unique_name
|
|
|
331 |
num_images: int = 1,
|
332 |
progress=gr.Progress(track_tqdm=True),
|
333 |
):
|
|
|
334 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
335 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
336 |
options = {
|
337 |
"prompt": [prompt] * num_images,
|
338 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
345 |
}
|
346 |
if use_resolution_binning:
|
347 |
options["use_resolution_binning"] = True
|
|
|
348 |
images = []
|
|
|
349 |
for i in range(0, num_images, BATCH_SIZE):
|
350 |
batch_options = options.copy()
|
351 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
|
|
360 |
image_paths = [save_image(img) for img in images]
|
361 |
return image_paths, seed
|
362 |
|
|
|
|
|
363 |
@spaces.GPU(duration=120, enable_queue=True)
|
364 |
def generate_3d_fn(
|
365 |
prompt: str,
|
|
|
368 |
num_steps: int = 64,
|
369 |
randomize_seed: bool = False,
|
370 |
):
|
|
|
|
|
|
|
|
|
371 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
372 |
model3d = Model()
|
373 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
374 |
return glb_path, seed
|
375 |
|
|
|
376 |
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
377 |
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
378 |
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
379 |
yolo_detector = YOLODetector(yolo_model_path)
|
380 |
|
381 |
def detect_objects(image: np.ndarray):
|
|
|
382 |
results = yolo_detector(image, verbose=False)[0]
|
383 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
|
|
384 |
box_annotator = sv.BoxAnnotator()
|
385 |
label_annotator = sv.LabelAnnotator()
|
|
|
386 |
annotated_image = image.copy()
|
387 |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
|
388 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
|
|
389 |
return Image.fromarray(annotated_image)
|
390 |
|
391 |
+
# --- Phi-4 Multimodal Model Setup with Text Streaming ---
|
|
|
392 |
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
|
|
393 |
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
394 |
phi4_model = AutoModelForCausalLM.from_pretrained(
|
395 |
phi4_model_path,
|
|
|
399 |
_attn_implementation="eager",
|
400 |
)
|
401 |
|
402 |
+
def process_phi4(input_type: str, file: str, question: str, max_new_tokens: int = 200):
|
403 |
"""
|
404 |
Process an image or audio input with the Phi-4 multimodal model.
|
405 |
+
Expects input_type to be either 'image' or 'audio' and file is a file path.
|
|
|
406 |
"""
|
407 |
user_prompt = '<|user|>'
|
408 |
assistant_prompt = '<|assistant|>'
|
|
|
412 |
yield "Please upload a file and provide a question."
|
413 |
return
|
414 |
|
415 |
+
try:
|
416 |
+
if input_type == "image":
|
417 |
+
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
|
418 |
+
image = load_image(file)
|
419 |
+
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
420 |
+
elif input_type == "audio":
|
421 |
+
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
|
422 |
+
audio, samplerate = load_audio_file(file)
|
423 |
+
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
424 |
+
else:
|
425 |
+
yield "Invalid input type selected. Use 'image' or 'audio'."
|
426 |
+
return
|
427 |
+
except Exception as e:
|
428 |
+
yield f"Error loading file: {str(e)}"
|
|
|
429 |
return
|
430 |
|
|
|
431 |
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
432 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
433 |
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
|
|
440 |
time.sleep(0.01)
|
441 |
yield buffer
|
442 |
|
|
|
|
|
443 |
@spaces.GPU
|
444 |
def generate(
|
445 |
input_dict: dict,
|
|
|
451 |
repetition_penalty: float = 1.2,
|
452 |
):
|
453 |
"""
|
454 |
+
Generates chatbot responses with support for multimodal input and special commands.
|
455 |
+
Special commands include:
|
456 |
+
- "@tts1" or "@tts2": Text-to-speech.
|
457 |
+
- "@image": Image generation using the SDXL pipeline.
|
458 |
+
- "@3d": 3D model generation using the ShapE pipeline.
|
459 |
+
- "@web": Web search or webpage visit.
|
460 |
+
- "@ragent": Reasoning chain using Llama mode.
|
461 |
+
- "@yolo": Object detection using YOLO.
|
462 |
+
- "@phi4": Processes image or audio inputs with the Phi-4 model and streams text output.
|
463 |
"""
|
464 |
text = input_dict["text"]
|
465 |
files = input_dict.get("files", [])
|
466 |
|
467 |
+
# --- Phi-4 Multimodal branch with text streaming ---
|
468 |
+
if text.strip().lower().startswith("@phi4"):
|
469 |
+
parts = text.strip().split(maxsplit=2)
|
470 |
+
if len(parts) < 3:
|
471 |
+
yield "Error: Please provide input type and a question. Format: '@phi4 [image|audio] <your question>'"
|
472 |
+
return
|
473 |
+
input_type = parts[1].lower()
|
474 |
+
question = parts[2]
|
475 |
+
|
476 |
+
if not files or len(files) == 0:
|
477 |
+
yield "Error: Please attach an image or audio file for Phi-4 processing."
|
478 |
+
return
|
479 |
+
|
480 |
+
if len(files) > 1:
|
481 |
+
yield "Warning: Multiple files attached. Only the first file will be processed."
|
482 |
+
|
483 |
+
file_input = files[0] # This is a string path from gr.MultimodalTextbox
|
484 |
+
|
485 |
+
extension = os.path.splitext(file_input)[1].lower()
|
486 |
+
if input_type == "image" and extension not in IMAGE_EXTENSIONS:
|
487 |
+
yield f"Error: Attached file is not an image. Expected extensions: {', '.join(IMAGE_EXTENSIONS)}"
|
488 |
+
return
|
489 |
+
elif input_type == "audio" and extension not in AUDIO_EXTENSIONS:
|
490 |
+
yield f"Error: Attached file is not an audio file. Expected extensions: {', '.join(AUDIO_EXTENSIONS)}"
|
491 |
+
return
|
492 |
+
|
493 |
+
yield "π Processing multimodal input with Phi-4..."
|
494 |
+
try:
|
495 |
+
for partial in process_phi4(input_type, file_input, question):
|
496 |
+
yield partial
|
497 |
+
except Exception as e:
|
498 |
+
yield f"Error processing file: {str(e)}"
|
499 |
+
return
|
500 |
+
|
501 |
+
# --- Other branches remain unchanged ---
|
502 |
if text.strip().lower().startswith("@3d"):
|
503 |
prompt = text[len("@3d"):].strip()
|
504 |
yield "π Hold tight, generating a 3D mesh GLB file....."
|
|
|
509 |
num_steps=64,
|
510 |
randomize_seed=True,
|
511 |
)
|
|
|
512 |
static_folder = os.path.join(os.getcwd(), "static")
|
513 |
if not os.path.exists(static_folder):
|
514 |
os.makedirs(static_folder)
|
515 |
new_filename = f"mesh_{uuid.uuid4()}.glb"
|
516 |
new_filepath = os.path.join(static_folder, new_filename)
|
517 |
shutil.copy(glb_path, new_filepath)
|
|
|
518 |
yield gr.File(new_filepath)
|
519 |
return
|
520 |
|
|
|
521 |
if text.strip().lower().startswith("@image"):
|
522 |
prompt = text[len("@image"):].strip()
|
523 |
yield "πͺ§ Generating image..."
|
|
|
537 |
yield gr.Image(image_paths[0])
|
538 |
return
|
539 |
|
|
|
540 |
if text.strip().lower().startswith("@web"):
|
541 |
web_command = text[len("@web"):].strip()
|
542 |
if web_command.lower().startswith("visit"):
|
|
|
553 |
yield results
|
554 |
return
|
555 |
|
|
|
556 |
if text.strip().lower().startswith("@ragent"):
|
557 |
prompt = text[len("@ragent"):].strip()
|
558 |
yield "π Initiating reasoning chain using Llama mode..."
|
|
|
560 |
yield partial
|
561 |
return
|
562 |
|
|
|
563 |
if text.strip().lower().startswith("@yolo"):
|
564 |
yield "π Running object detection with YOLO..."
|
565 |
if not files or len(files) == 0:
|
|
|
570 |
if isinstance(input_file, str):
|
571 |
pil_image = Image.open(input_file)
|
572 |
else:
|
573 |
+
pil_image = Image.open(input_file)
|
574 |
except Exception as e:
|
575 |
yield f"Error loading image: {str(e)}"
|
576 |
return
|
|
|
579 |
yield gr.Image(result_img)
|
580 |
return
|
581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
tts_prefix = "@tts"
|
583 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
584 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
585 |
if is_tts and voice_index:
|
586 |
voice = TTS_VOICES[voice_index - 1]
|
587 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
591 |
text = text.replace(tts_prefix, "").strip()
|
592 |
conversation = clean_chat_history(chat_history)
|
593 |
conversation.append({"role": "user", "content": text})
|
|
|
594 |
if files:
|
595 |
if len(files) > 1:
|
596 |
+
images = [load_image(file) for file in files]
|
597 |
elif len(files) == 1:
|
598 |
+
images = [load_image(files[0])]
|
599 |
else:
|
600 |
images = []
|
601 |
messages = [{
|
|
|
611 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
612 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
613 |
thread.start()
|
|
|
614 |
buffer = ""
|
615 |
yield "π€ Thinking..."
|
616 |
for new_text in streamer:
|
|
|
638 |
}
|
639 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
640 |
t.start()
|
|
|
641 |
outputs = []
|
642 |
for new_text in streamer:
|
643 |
outputs.append(new_text)
|
644 |
yield "".join(outputs)
|
|
|
645 |
final_response = "".join(outputs)
|
646 |
yield final_response
|
|
|
647 |
if is_tts and voice:
|
648 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
649 |
yield gr.Audio(output_file, autoplay=True)
|
650 |
|
|
|
|
|
651 |
demo = gr.ChatInterface(
|
652 |
fn=generate,
|
653 |
additional_inputs=[
|
|
|
679 |
multimodal=True,
|
680 |
)
|
681 |
|
|
|
682 |
if not os.path.exists("static"):
|
683 |
os.makedirs("static")
|
684 |
|