Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,222 Bytes
a85c4cf f5e2b63 04cce22 4074d29 11d7c13 f5e2b63 4074d29 04cce22 f5e2b63 a85c4cf 4074d29 a85c4cf 4074d29 f5e2b63 04cce22 f5e2b63 04cce22 4074d29 04cce22 4074d29 04cce22 4074d29 04cce22 4074d29 04cce22 03b41ea 04cce22 03b41ea 04cce22 4074d29 04cce22 4074d29 11d7c13 f5e2b63 03b41ea 04cce22 4074d29 03b41ea 4074d29 04cce22 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 56aa407 4074d29 04cce22 108256c 4074d29 03b41ea 4074d29 108256c 4074d29 108256c 4074d29 108256c 4074d29 108256c 4074d29 108256c 4074d29 ce44242 108256c 4074d29 ce44242 4074d29 ce44242 4074d29 108256c 4074d29 03b41ea 4074d29 108256c 4074d29 108256c 4074d29 108256c 03b41ea 4074d29 108256c 4074d29 108256c 03b41ea 108256c 4074d29 108256c 4074d29 108256c ce44242 108256c 4074d29 108256c ce44242 03b41ea ce44242 4074d29 ce44242 4074d29 ce44242 03b41ea 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 108256c 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 4074d29 03b41ea 108256c 4074d29 108256c 4074d29 108256c 4074d29 108256c e9f69e7 4074d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
# Removed ImageSlider import
from huggingface_hub import hf_hub_download
# Ensure these custom modules are accessible in the environment
# If running locally, they should be in the same directory or installed
try:
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
except ImportError as e:
print(f"Error importing custom modules: {e}")
print("Please ensure 'controlnet_union.py' and 'pipeline_fill_sd_xl.py' are in the working directory or installed.")
# Optionally, try installing if running in a suitable environment
# import os
# os.system("pip install git+https://github.com/UNION-AI-Research/FILL-Context-Aware-Outpainting.git") # Or wherever the package is hosted
# Re-try import might be needed depending on environment setup
exit()
from PIL import Image, ImageDraw
import numpy as np
import os # For checking example files
# --- Model Loading ---
# Use environment variable for model cache if needed
# HUGGINGFACE_HUB_CACHE = os.environ.get("HUGGINGFACE_HUB_CACHE", None)
try:
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
# cache_dir=HUGGINGFACE_HUB_CACHE
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
# cache_dir=HUGGINGFACE_HUB_CACHE
)
sstate_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
print("ControlNet loaded successfully.")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, # cache_dir=HUGGINGFACE_HUB_CACHE
).to("cuda")
print("VAE loaded successfully.")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
# cache_dir=HUGGINGFACE_HUB_CACHE
).to("cuda")
print("Pipeline loaded successfully.")
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
print("Scheduler configured.")
except Exception as e:
print(f"Error during model loading: {e}")
raise e
# --- Helper Functions ---
def can_expand(source_width, source_height, target_width, target_height, alignment):
"""Checks if the image can be expanded based on the alignment."""
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
raise gr.Error("Input image not provided.")
try:
target_size = (width, height)
# Calculate the scaling factor to fit the image within the target size
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
# Resize the source image to fit within target size
source = image.resize((new_width, new_height), Image.LANCZOS)
# Apply resize option using percentages
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
elif resize_option == "Custom":
resize_percentage = custom_resize_percentage
else:
raise ValueError(f"Invalid resize option: {resize_option}")
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Ensure dimensions fit within target (can happen if original image is tiny and resize % is large)
new_width = min(new_width, target_size[0])
new_height = min(new_height, target_size[1])
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel if overlap is enabled, otherwise 0
overlap_x = max(overlap_x, 1) if overlap_left or overlap_right else 0
overlap_y = max(overlap_y, 1) if overlap_top or overlap_bottom else 0
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
else:
raise ValueError(f"Invalid alignment: {alignment}")
# Adjust margins to ensure image is fully within bounds (should be redundant with min check above)
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new('RGB', target_size, (255, 255, 255)) # White background
background.paste(source, (margin_x, margin_y))
# Create the mask (initially all black - meaning keep everything)
mask_np = np.zeros(target_size[::-1], dtype=np.uint8) # Use numpy for easier slicing [::-1] for (height, width)
# Calculate the coordinates of the *source image* area within the target canvas
source_left = margin_x
source_top = margin_y
source_right = margin_x + new_width
source_bottom = margin_y + new_height
# Calculate the coordinates of the *unmasked* area (area to keep from source)
unmasked_left = source_left + overlap_x if overlap_left else source_left
unmasked_top = source_top + overlap_y if overlap_top else source_top
unmasked_right = source_right - overlap_x if overlap_right else source_right
unmasked_bottom = source_bottom - overlap_y if overlap_bottom else source_bottom
# Special handling for edge alignments to ensure the edge itself is kept if overlap disabled
if alignment == "Left" and not overlap_left:
unmasked_left = source_left
if alignment == "Right" and not overlap_right:
unmasked_right = source_right
if alignment == "Top" and not overlap_top:
unmasked_top = source_top
if alignment == "Bottom" and not overlap_bottom:
unmasked_bottom = source_bottom
# Ensure coordinates are valid and clipped to the source image area within the canvas
unmasked_left = max(source_left, min(unmasked_left, source_right))
unmasked_top = max(source_top, min(unmasked_top, source_bottom))
unmasked_right = max(source_left, min(unmasked_right, source_right))
unmasked_bottom = max(source_top, min(unmasked_bottom, source_bottom))
# Create the final mask: White (255) = Area to inpaint/outpaint, Black (0) = Area to keep
final_mask_np = np.ones(target_size[::-1], dtype=np.uint8) * 255 # Start with all white (change everything)
if unmasked_right > unmasked_left and unmasked_bottom > unmasked_top:
# Set the area to keep (calculated unmasked rectangle) to black (0)
final_mask_np[unmasked_top:unmasked_bottom, unmasked_left:unmasked_right] = 0
mask = Image.fromarray(final_mask_np)
return background, mask
except Exception as e:
print(f"Error in prepare_image_and_mask: {e}")
raise gr.Error(f"Failed to prepare image and mask: {e}")
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
if image is None:
return None # Or return a placeholder image/message
try:
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# Create a preview image showing the mask
preview = background.copy().convert('RGBA')
# Create a semi-transparent red overlay for the masked (inpainting/outpainting) area
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 100)) # 100 alpha (~40% opacity)
# The mask is white (255) where outpainting happens. Use this directly.
preview.paste(red_overlay, (0, 0), mask) # Paste red where mask is white
return preview
except Exception as e:
print(f"Error during preview generation: {e}")
# Return the original background or an error placeholder
if 'background' in locals():
return background.convert('RGBA')
else:
return Image.new('RGBA', (width, height), (200, 200, 200, 255)) # Grey placeholder
@spaces.GPU(duration=60) # Adjusted duration slightly
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, progress=gr.Progress(track_tqdm=True)):
if image is None:
raise gr.Error("Please provide an input image.")
try:
# --- Preparation ---
progress(0.1, desc="Preparing image and mask...")
original_alignment = alignment
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# --- Alignment Check & Correction ---
# Get dimensions *after* initial placement and resize
pasted_source_img_width = int(image.width * min(width / image.width, height / image.height) * (custom_resize_percentage if resize_option=='Custom' else {'Full':100, '50%':50, '33%':33, '25%':25}[resize_option])/100)
pasted_source_img_height = int(image.height * min(width / image.width, height / image.height) * (custom_resize_percentage if resize_option=='Custom' else {'Full':100, '50%':50, '33%':33, '25%':25}[resize_option])/100)
pasted_source_img_width = max(64, min(pasted_source_img_width, width))
pasted_source_img_height = max(64, min(pasted_source_img_height, height))
needs_reprepare = False
if alignment in ("Left", "Right") and pasted_source_img_width >= width:
print(f"Warning: Source width ({pasted_source_img_width}) >= target width ({width}) with {alignment} alignment. Forcing Middle alignment.")
alignment = "Middle"
needs_reprepare = True
if alignment in ("Top", "Bottom") and pasted_source_img_height >= height:
print(f"Warning: Source height ({pasted_source_img_height}) >= target height ({height}) with {alignment} alignment. Forcing Middle alignment.")
alignment = "Middle"
needs_reprepare = True
if needs_reprepare and alignment != original_alignment:
print("Re-preparing mask due to alignment change.")
progress(0.15, desc="Re-preparing mask for Middle alignment...")
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
# ControlNet expects the image with the *original* content visible in the non-masked area
cnet_image = background.copy()
# In some ControlNet inpainting setups, you might mask the control image too,
# but Union ControlNet Fill often works well with the unmasked source pasted onto the background.
# cnet_image.paste(0, mask=ImageOps.invert(mask)) # Optional: Black out masked area in CNet image
# --- Prompt Encoding ---
progress(0.2, desc="Encoding prompt...")
final_prompt = f"{prompt_input}, high quality, 4k" if prompt_input else "high quality, 4k" # Add default tags if no prompt
negative_prompt = "low quality, blurry, noisy, text, words, letters, watermark, signature, username, artist name, deformed, distorted, disfigured, bad anatomy, extra limbs, missing limbs"
# Note: TCD/Lightning pipelines often work better *without* explicit negative prompts encoded
# Try encoding only the positive prompt first
(
prompt_embeds,
_, # negative_prompt_embeds (set to None or handle differently for TCD)
pooled_prompt_embeds,
_, # negative_pooled_prompt_embeds
) = pipe.encode_prompt(final_prompt, "cuda", False) # do_classifier_free_guidance=False for TCD
# --- Inference ---
progress(0.3, desc="Starting diffusion process...")
print(f"Running inference with {num_inference_steps} steps...")
pipeline_output = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=None, # Pass None for TCD/Lightning
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=None, # Pass None for TCD/Lightning
image=background, # Initial state for masked area (background with source)
mask_image=mask, # Mask (white = change)
control_image=cnet_image, # ControlNet input
num_inference_steps=num_inference_steps,
guidance_scale=0.0, # Crucial for TCD/Lightning
controlnet_conditioning_scale=0.8, # Default for FILL pipeline, adjust if needed
output_type="pil" # Ensure PIL output
# Add tqdm=True if supported by the custom pipeline and using gr.Progress without track_tqdm
)
# --- Process Output ---
progress(0.9, desc="Processing results...")
# Check if the pipeline returned a standard output object or a generator
output_image = None
if hasattr(pipeline_output, 'images'): # Standard diffusers output
print("Pipeline returned a standard output object.")
if len(pipeline_output.images) > 0:
output_image = pipeline_output.images[0]
else:
raise ValueError("Pipeline output contained no images.")
# Check if it's iterable (generator) - less likely with direct call and output_type='pil' but good practice
elif hasattr(pipeline_output, '__iter__') and not isinstance(pipeline_output, dict):
print("Pipeline returned a generator, iterating to get the final image.")
last_item = None
for item in pipeline_output:
last_item = item
# Try to extract image from the last yielded item (structure can vary)
if isinstance(last_item, tuple) and len(last_item) > 0 and isinstance(last_item[0], Image.Image):
output_image = last_item[0]
elif isinstance(last_item, dict) and 'images' in last_item and len(last_item['images']) > 0:
output_image = last_item['images'][0]
elif isinstance(last_item, Image.Image):
output_image = last_item
elif hasattr(last_item, 'images') and len(last_item.images) > 0: # Handle case where object yielded early
output_image = last_item.images[0]
if output_image is None:
raise ValueError("Pipeline generator did not yield a valid final image structure.")
else:
raise TypeError(f"Unexpected pipeline output type: {type(pipeline_output)}. Cannot extract image.")
print("Inference complete.")
progress(1.0, desc="Done!")
return output_image
except Exception as e:
print(f"Error during inference: {e}")
import traceback
traceback.print_exc() # Print full traceback to console/logs
raise gr.Error(f"Inference failed: {e}")
def clear_result(*args):
"""Clears the result Image and related components."""
updates = {
result: gr.update(value=None),
use_as_input_button: gr.update(visible=False),
}
# If preview image is passed as an arg, clear it too
if len(args) > 0 and isinstance(args[0], gr.Image):
updates[args[0]] = gr.update(value=None) # Assuming preview_image is the first optional arg
return updates
# --- UI Helper Functions ---
def preload_presets(target_ratio, ui_width, ui_height):
"""Updates the width and height sliders based on the selected aspect ratio."""
settings_update = gr.update() # Default: no change to accordion state
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
elif target_ratio == "Custom":
changed_width = ui_width # Keep current slider values
changed_height = ui_height
settings_update = gr.update(open=True) # Open accordion for custom
else: # Should not happen
changed_width = ui_width
changed_height = ui_height
return changed_width, changed_height, settings_update
def select_the_right_preset(user_width, user_height):
"""Updates the radio button based on the current slider values."""
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
"""Shows/hides the custom resize slider."""
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
"""Updates the history gallery with the new image."""
if not isinstance(new_image, Image.Image): # Don't add if generation failed (None)
return history or [] # Return current or empty list
if history is None:
history = []
history.insert(0, new_image)
# Limit history size (optional)
max_history = 12
if len(history) > max_history:
history = history[:max_history]
return history
# --- Gradio UI Definition ---
css = """
.gradio-container {
max-width: 1200px !important; /* Use max-width for responsiveness */
margin: auto !important; /* Center the container */
padding: 10px; /* Add some padding */
}
h1 { text-align: center; margin-bottom: 15px;}
footer { display: none !important; /* More reliable way to hide footer */ }
/* Ensure result image takes reasonable space */
#result-image img {
max-height: 768px; /* Adjust max height as needed */
object-fit: contain;
width: 100%; /* Allow image to use column width */
height: auto;
display: block; /* Prevent extra space below image */
margin: auto; /* Center image within its container */
}
#input-image img {
max-height: 400px;
object-fit: contain;
width: 100%;
height: auto;
display: block;
margin: auto;
}
#preview-image img {
max-height: 250px; /* Smaller preview */
object-fit: contain;
width: 100%;
height: auto;
display: block;
margin: auto;
}
#history-gallery .thumbnail-item { /* Style history items */
height: 100px !important;
overflow: hidden; /* Hide overflow */
}
#history-gallery .gallery {
grid-template-rows: repeat(auto-fill, 100px) !important;
gap: 4px !important; /* Add small gap */
}
#history-gallery .thumbnail-item img {
object-fit: contain !important; /* Ensure history previews fit */
height: 100%;
width: 100%;
}
/* Make Checkboxes smaller and closer */
.gradio-checkboxgroup .wrap {
gap: 0.5rem 1rem !important; /* Adjust spacing */
}
.gradio-checkbox label span {
font-size: 0.9em; /* Slightly smaller label text */
}
.gradio-checkbox input {
transform: scale(0.9); /* Slightly smaller checkbox */
}
/* Style Accordion */
.gradio-accordion .label-wrap { /* Target the label wrapper */
border: 1px solid #e0e0e0;
border-radius: 5px;
padding: 8px 12px;
background-color: #f9f9f9;
}
"""
title = """<h1 align="center">🖼️ Diffusers Image Outpaint Lightning ⚡</h1>"""
# --- Example Files Handling ---
# Create examples directory if it doesn't exist
if not os.path.exists("./examples"):
os.makedirs("./examples")
# Check for example images and provide defaults or placeholders if missing
example_files = {
"ex1": "./examples/example_1.webp",
"ex2": "./examples/example_2.jpg",
"ex3": "./examples/example_3.jpg"
}
default_image_path = None # Will be set to the first available example
# You might want to download example images if they don't exist
# from huggingface_hub import hf_hub_download
# def download_example(repo_id, filename, local_path):
# if not os.path.exists(local_path):
# try:
# hf_hub_download(repo_id=repo_id, filename=filename, local_dir="./examples", local_dir_use_symlinks=False)
# print(f"Downloaded {filename}")
# except Exception as e:
# print(f"Failed to download example {filename}: {e}")
# return False # Indicate failure
# return os.path.exists(local_path)
# Example: download_example("path/to/your/example-repo", "example_1.webp", example_files["ex1"])
# For now, we just check existence
examples_available = {key: os.path.exists(path) for key, path in example_files.items()}
example_list = []
if examples_available["ex1"]:
example_list.append([example_files["ex1"], "A wide landscape view of the mountains", 1280, 720, "Middle"])
if default_image_path is None: default_image_path = example_files["ex1"]
if examples_available["ex2"]:
example_list.append([example_files["ex2"], "Full body shot of the astronaut on the moon", 720, 1280, "Middle"])
if default_image_path is None: default_image_path = example_files["ex2"]
if examples_available["ex3"]:
example_list.append([example_files["ex3"], "Expanding the sky and ground around the subject", 1024, 1024, "Middle"])
example_list.append([example_files["ex3"], "Expanding downwards from the subject", 1024, 1024, "Top"])
example_list.append([example_files["ex3"], "Expanding upwards from the subject", 1024, 1024, "Bottom"])
if default_image_path is None: default_image_path = example_files["ex3"]
if not example_list:
print("Warning: No example images found in ./examples/. Examples section will be empty.")
# Optionally create a placeholder image
# placeholder = Image.new('RGB', (512, 512), color = 'grey')
# placeholder_path = "./examples/placeholder.png"
# placeholder.save(placeholder_path)
# example_list.append([placeholder_path, "Placeholder", 1024, 1024, "Middle"])
# default_image_path = placeholder_path
# --- UI ---
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: # Added a theme
gr.HTML(title)
with gr.Row():
with gr.Column(scale=1): # Left column for inputs
input_image = gr.Image(
value=default_image_path, # Load default example
type="pil",
label="Input Image",
elem_id="input-image"
)
prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the scene to expand (optional but recommended)...", lines=2)
with gr.Row():
target_ratio = gr.Radio(
label="Target Aspect Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="9:16",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Align Source Image",
scale=1
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Row():
width_slider = gr.Slider(
label="Target Width", minimum=512, maximum=2048, step=64, value=720
)
height_slider = gr.Slider(
label="Target Height", minimum=512, maximum=2048, step=64, value=1280
)
num_inference_steps = gr.Slider(
label="Steps (TCD/Lightning: 1-8)", minimum=1, maximum=12, step=1, value=4
)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask Overlap with Source (%)", minimum=0, maximum=50, value=12, step=1
)
gr.Markdown("Select edges to overlap:", scale=0) # Add context
with gr.Row(elem_classes="gradio-checkboxgroup"): # Apply CSS class
overlap_top = gr.Checkbox(label="Top", value=True, scale=1)
overlap_bottom = gr.Checkbox(label="Bottom", value=True, scale=1)
overlap_left = gr.Checkbox(label="Left", value=True, scale=1)
overlap_right = gr.Checkbox(label="Right", value=True, scale=1)
with gr.Row():
resize_option = gr.Radio(
label="Resize source within target",
choices=["Full", "50%", "33%", "25%", "Custom"],
value="Full",
scale=2
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False, scale=1
)
preview_button = gr.Button("Preview Mask & Alignment")
preview_image = gr.Image(label="Mask Preview (Red = Outpaint Area)", type="pil", interactive=False, elem_id="preview-image")
if example_list:
gr.Examples(
examples=example_list,
inputs=[input_image, prompt_input, width_slider, height_slider, alignment_dropdown],
label="Examples (Click to load)",
examples_per_page=10
)
else:
gr.Markdown("_(No example files found in ./examples)_")
run_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1): # Right column for output
result = gr.Image(label="Generated Image", type="pil", interactive=False, elem_id="result-image")
use_as_input_button = gr.Button("Use Result as Input Image", visible=False)
history_gallery = gr.Gallery(
label="History", columns=6, object_fit="contain", interactive=False,
height=110, elem_id="history-gallery"
)
# --- Event Handling ---
# Function to set result as input and clear result area
def use_output_as_input_and_clear(output_image):
return {
input_image: gr.update(value=output_image),
result: gr.update(value=None), # Clear result after using it
use_as_input_button: gr.update(visible=False) # Hide button again
}
use_as_input_button.click(
fn=use_output_as_input_and_clear,
inputs=[result],
outputs=[input_image, result, use_as_input_button]
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
# Consolidate common inputs for generation
gen_inputs = [
input_image, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom
]
gen_outputs = [result] # Single output image
# Chain generation logic for Run button
run_trigger = run_button.click(
fn=clear_result, # Clear previous result first
inputs=[], # No inputs needed for clear
outputs=[result, use_as_input_button], # Components to clear/hide
queue=False
).then(
fn=infer,
inputs=gen_inputs,
outputs=gen_outputs,
)
# After generation finishes (successfully or not), update history and button visibility
run_trigger.then(
fn=lambda res_img, hist: update_history(res_img, hist),
inputs=[result, history_gallery],
outputs=[history_gallery],
queue=False # Update history immediately
).then(
# Show the 'Use as Input' button only if generation was successful (result is not None)
fn=lambda res_img: gr.update(visible=isinstance(res_img, Image.Image)),
inputs=[result],
outputs=[use_as_input_button],
queue=False # Show button immediately
)
# Chain generation logic for Enter key in Prompt textbox
submit_trigger = prompt_input.submit(
fn=clear_result,
inputs=[],
outputs=[result, use_as_input_button],
queue=False
).then(
fn=infer,
inputs=gen_inputs,
outputs=gen_outputs,
)
submit_trigger.then(
fn=lambda res_img, hist: update_history(res_img, hist),
inputs=[result, history_gallery],
outputs=[history_gallery],
queue=False
).then(
fn=lambda res_img: gr.update(visible=isinstance(res_img, Image.Image)),
inputs=[result],
outputs=[use_as_input_button],
queue=False
)
# Preview button logic
preview_inputs = [
input_image, width_slider, height_slider, overlap_percentage, resize_option,
custom_resize_percentage, alignment_dropdown, overlap_left, overlap_right,
overlap_top, overlap_bottom
]
preview_button.click(
fn=preview_image_and_mask,
inputs=preview_inputs,
outputs=preview_image,
queue=False
)
# Launch the interface
demo.queue(max_size=10).launch(ssr_mode=False, show_error=True, debug=True) # Add debug=True for more logs |