Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,172 +2,258 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
-
|
6 |
-
from controlnet_union import ControlNetModel_Union
|
7 |
-
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
8 |
from gradio_imageslider import ImageSlider
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
|
|
|
|
11 |
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
14 |
-
|
15 |
-
# (Either manual download or via from_pretrained)
|
16 |
-
controlnet_model = ControlNetModel_Union.from_pretrained(
|
17 |
"xinsir/controlnet-union-sdxl-1.0",
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
vae = AutoencoderKL.from_pretrained(
|
23 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
24 |
-
torch_dtype=torch.float16
|
25 |
).to("cuda")
|
26 |
|
27 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
28 |
"SG161222/RealVisXL_V5.0_Lightning",
|
29 |
torch_dtype=torch.float16,
|
30 |
vae=vae,
|
31 |
-
controlnet=
|
32 |
variant="fp16",
|
33 |
).to("cuda")
|
|
|
34 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
35 |
|
36 |
-
# --- Utility functions ---
|
37 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
|
|
38 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
39 |
return False
|
40 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
41 |
return False
|
42 |
return True
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
def prepare_image_and_mask(image, width, height, overlap_percentage,
|
46 |
-
resize_option, custom_resize_percentage,
|
47 |
-
alignment, overlap_left, overlap_right,
|
48 |
-
overlap_top, overlap_bottom):
|
49 |
-
target = (width, height)
|
50 |
-
scale = min(target[0] / image.width, target[1] / image.height)
|
51 |
-
w, h = int(image.width * scale), int(image.height * scale)
|
52 |
-
src = image.resize((w, h), Image.LANCZOS)
|
53 |
-
|
54 |
-
# Resize percentage
|
55 |
-
if resize_option == "Full": pct = 100
|
56 |
-
elif resize_option == "50%": pct = 50
|
57 |
-
elif resize_option == "33%": pct = 33
|
58 |
-
elif resize_option == "25%": pct = 25
|
59 |
-
else: pct = custom_resize_percentage
|
60 |
-
|
61 |
-
rw, rh = max(int(src.width * pct / 100), 64), max(int(src.height * pct / 100), 64)
|
62 |
-
src = src.resize((rw, rh), Image.LANCZOS)
|
63 |
-
|
64 |
-
ox = max(int(rw * overlap_percentage / 100), 1)
|
65 |
-
oy = max(int(rh * overlap_percentage / 100), 1)
|
66 |
-
|
67 |
-
# Margins
|
68 |
-
if alignment == "Middle": mx, my = (width - rw)//2, (height - rh)//2
|
69 |
-
elif alignment == "Left": mx, my = 0, (height - rh)//2
|
70 |
-
elif alignment == "Right": mx, my = width - rw, (height - rh)//2
|
71 |
-
elif alignment == "Top": mx, my = (width - rw)//2, 0
|
72 |
-
else: mx, my = (width - rw)//2, height - rh
|
73 |
-
|
74 |
-
mx, my = max(0, min(mx, width - rw)), max(0, min(my, height - rh))
|
75 |
-
|
76 |
-
bg = Image.new("RGB", target, (255,255,255))
|
77 |
-
bg.paste(src, (mx, my))
|
78 |
-
|
79 |
-
mask = Image.new("L", target, 255)
|
80 |
-
d = ImageDraw.Draw(mask)
|
81 |
-
|
82 |
-
lx = mx + (ox if overlap_left else 2)
|
83 |
-
rx = mx + rw - (ox if overlap_right else 2)
|
84 |
-
ty = my + (oy if overlap_top else 2)
|
85 |
-
by = my + rh - (oy if overlap_bottom else 2)
|
86 |
-
|
87 |
-
# Edge adjustments
|
88 |
-
if alignment == "Left": lx = mx + (ox if overlap_left else 0)
|
89 |
-
if alignment == "Right": rx = mx + rw - (ox if overlap_right else 0)
|
90 |
-
if alignment == "Top": ty = my + (oy if overlap_top else 0)
|
91 |
-
if alignment == "Bottom": by = my + rh - (oy if overlap_bottom else 0)
|
92 |
-
|
93 |
-
d.rectangle([(lx, ty), (rx, by)], fill=0)
|
94 |
-
return bg, mask
|
95 |
-
|
96 |
-
|
97 |
-
def preview_image_and_mask(*args):
|
98 |
-
bg, mask = prepare_image_and_mask(*args)
|
99 |
-
vis = bg.copy().convert("RGBA")
|
100 |
-
red = Image.new("RGBA", bg.size, (255,0,0,64))
|
101 |
-
overlay = Image.new("RGBA", bg.size, (0,0,0,0))
|
102 |
-
overlay.paste(red, (0,0), mask)
|
103 |
-
return Image.alpha_composite(vis, overlay)
|
104 |
-
|
105 |
-
# --- Fixed infer: return list for slider ---
|
106 |
@spaces.GPU(duration=24)
|
107 |
-
def infer(image, width, height, overlap_percentage, num_inference_steps,
|
108 |
-
|
109 |
-
|
110 |
-
background, mask = prepare_image_and_mask(
|
111 |
-
image, width, height, overlap_percentage,
|
112 |
-
resize_option, custom_resize_percentage,
|
113 |
-
alignment, overlap_left, overlap_right,
|
114 |
-
overlap_top, overlap_bottom
|
115 |
-
)
|
116 |
if not can_expand(background.width, background.height, width, height, alignment):
|
117 |
alignment = "Middle"
|
118 |
|
119 |
-
|
120 |
-
|
121 |
|
122 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
123 |
-
embeds = pipe.encode_prompt(final_prompt, "cuda", True)
|
124 |
-
|
125 |
-
# Run pipeline and grab last frame
|
126 |
-
gen = pipe(
|
127 |
-
prompt_embeds=embeds[0],
|
128 |
-
negative_prompt_embeds=embeds[1],
|
129 |
-
pooled_prompt_embeds=embeds[2],
|
130 |
-
negative_pooled_prompt_embeds=embeds[3],
|
131 |
-
image=hole,
|
132 |
-
num_inference_steps=num_inference_steps
|
133 |
-
)
|
134 |
-
last = None
|
135 |
-
for img in gen:
|
136 |
-
last = img
|
137 |
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
|
143 |
|
|
|
144 |
|
145 |
def clear_result():
|
|
|
146 |
return gr.update(value=None)
|
147 |
|
148 |
-
def preload_presets(
|
149 |
-
|
150 |
-
if
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
return history
|
167 |
|
168 |
-
css = "
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
|
|
171 |
with gr.Blocks(css=css) as demo:
|
172 |
gr.HTML(title)
|
173 |
with gr.Row():
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from diffusers import AutoencoderKL, TCDScheduler
|
5 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
|
|
|
|
6 |
from gradio_imageslider import ImageSlider
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
from controlnet_union import ControlNetModel_Union
|
10 |
+
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
11 |
+
|
12 |
from PIL import Image, ImageDraw
|
13 |
import numpy as np
|
14 |
|
15 |
+
config_file = hf_hub_download(
|
|
|
|
|
16 |
"xinsir/controlnet-union-sdxl-1.0",
|
17 |
+
filename="config_promax.json",
|
18 |
+
)
|
19 |
+
|
20 |
+
config = ControlNetModel_Union.load_config(config_file)
|
21 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
22 |
+
model_file = hf_hub_download(
|
23 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
24 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
25 |
+
)
|
26 |
+
|
27 |
+
sstate_dict = load_state_dict(model_file)
|
28 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
29 |
+
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
30 |
+
)
|
31 |
+
model.to(device="cuda", dtype=torch.float16)
|
32 |
+
#----------------------
|
33 |
|
34 |
vae = AutoencoderKL.from_pretrained(
|
35 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
36 |
).to("cuda")
|
37 |
|
38 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
39 |
"SG161222/RealVisXL_V5.0_Lightning",
|
40 |
torch_dtype=torch.float16,
|
41 |
vae=vae,
|
42 |
+
controlnet=model,
|
43 |
variant="fp16",
|
44 |
).to("cuda")
|
45 |
+
|
46 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
47 |
|
|
|
48 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
49 |
+
"""Checks if the image can be expanded based on the alignment."""
|
50 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
51 |
return False
|
52 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
53 |
return False
|
54 |
return True
|
55 |
|
56 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
57 |
+
target_size = (width, height)
|
58 |
+
|
59 |
+
# Calculate the scaling factor to fit the image within the target size
|
60 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
61 |
+
new_width = int(image.width * scale_factor)
|
62 |
+
new_height = int(image.height * scale_factor)
|
63 |
+
|
64 |
+
# Resize the source image to fit within target size
|
65 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
66 |
+
|
67 |
+
# Apply resize option using percentages
|
68 |
+
if resize_option == "Full":
|
69 |
+
resize_percentage = 100
|
70 |
+
elif resize_option == "50%":
|
71 |
+
resize_percentage = 50
|
72 |
+
elif resize_option == "33%":
|
73 |
+
resize_percentage = 33
|
74 |
+
elif resize_option == "25%":
|
75 |
+
resize_percentage = 25
|
76 |
+
else: # Custom
|
77 |
+
resize_percentage = custom_resize_percentage
|
78 |
+
|
79 |
+
# Calculate new dimensions based on percentage
|
80 |
+
resize_factor = resize_percentage / 100
|
81 |
+
new_width = int(source.width * resize_factor)
|
82 |
+
new_height = int(source.height * resize_factor)
|
83 |
+
|
84 |
+
# Ensure minimum size of 64 pixels
|
85 |
+
new_width = max(new_width, 64)
|
86 |
+
new_height = max(new_height, 64)
|
87 |
+
|
88 |
+
# Resize the image
|
89 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
90 |
+
|
91 |
+
# Calculate the overlap in pixels based on the percentage
|
92 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
93 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
94 |
+
|
95 |
+
# Ensure minimum overlap of 1 pixel
|
96 |
+
overlap_x = max(overlap_x, 1)
|
97 |
+
overlap_y = max(overlap_y, 1)
|
98 |
+
|
99 |
+
# Calculate margins based on alignment
|
100 |
+
if alignment == "Middle":
|
101 |
+
margin_x = (target_size[0] - new_width) // 2
|
102 |
+
margin_y = (target_size[1] - new_height) // 2
|
103 |
+
elif alignment == "Left":
|
104 |
+
margin_x = 0
|
105 |
+
margin_y = (target_size[1] - new_height) // 2
|
106 |
+
elif alignment == "Right":
|
107 |
+
margin_x = target_size[0] - new_width
|
108 |
+
margin_y = (target_size[1] - new_height) // 2
|
109 |
+
elif alignment == "Top":
|
110 |
+
margin_x = (target_size[0] - new_width) // 2
|
111 |
+
margin_y = 0
|
112 |
+
elif alignment == "Bottom":
|
113 |
+
margin_x = (target_size[0] - new_width) // 2
|
114 |
+
margin_y = target_size[1] - new_height
|
115 |
+
|
116 |
+
# Adjust margins to eliminate gaps
|
117 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
118 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
119 |
+
|
120 |
+
# Create a new background image and paste the resized source image
|
121 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
122 |
+
background.paste(source, (margin_x, margin_y))
|
123 |
+
|
124 |
+
# Create the mask
|
125 |
+
mask = Image.new('L', target_size, 255)
|
126 |
+
mask_draw = ImageDraw.Draw(mask)
|
127 |
+
|
128 |
+
# Calculate overlap areas
|
129 |
+
white_gaps_patch = 2
|
130 |
+
|
131 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
132 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
133 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
134 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
135 |
+
|
136 |
+
if alignment == "Left":
|
137 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
138 |
+
elif alignment == "Right":
|
139 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
140 |
+
elif alignment == "Top":
|
141 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
142 |
+
elif alignment == "Bottom":
|
143 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
144 |
+
|
145 |
+
|
146 |
+
# Draw the mask
|
147 |
+
mask_draw.rectangle([
|
148 |
+
(left_overlap, top_overlap),
|
149 |
+
(right_overlap, bottom_overlap)
|
150 |
+
], fill=0)
|
151 |
+
|
152 |
+
return background, mask
|
153 |
+
|
154 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
155 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
156 |
+
|
157 |
+
# Create a preview image showing the mask
|
158 |
+
preview = background.copy().convert('RGBA')
|
159 |
+
|
160 |
+
# Create a semi-transparent red overlay
|
161 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
162 |
+
|
163 |
+
# Convert black pixels in the mask to semi-transparent red
|
164 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
165 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
166 |
+
|
167 |
+
# Overlay the red mask on the background
|
168 |
+
preview = Image.alpha_composite(preview, red_mask)
|
169 |
+
|
170 |
+
return preview
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
@spaces.GPU(duration=24)
|
173 |
+
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
174 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
175 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
if not can_expand(background.width, background.height, width, height, alignment):
|
177 |
alignment = "Middle"
|
178 |
|
179 |
+
cnet_image = background.copy()
|
180 |
+
cnet_image.paste(0, (0, 0), mask)
|
181 |
|
182 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
(
|
185 |
+
prompt_embeds,
|
186 |
+
negative_prompt_embeds,
|
187 |
+
pooled_prompt_embeds,
|
188 |
+
negative_pooled_prompt_embeds,
|
189 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
190 |
+
|
191 |
+
for image in pipe(
|
192 |
+
prompt_embeds=prompt_embeds,
|
193 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
194 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
195 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
196 |
+
image=cnet_image,
|
197 |
+
num_inference_steps=num_inference_steps
|
198 |
+
):
|
199 |
+
yield cnet_image, image
|
200 |
|
201 |
+
image = image.convert("RGBA")
|
202 |
+
cnet_image.paste(image, (0, 0), mask)
|
203 |
|
204 |
+
yield background, cnet_image
|
205 |
|
206 |
def clear_result():
|
207 |
+
"""Clears the result ImageSlider."""
|
208 |
return gr.update(value=None)
|
209 |
|
210 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
211 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
212 |
+
if target_ratio == "9:16":
|
213 |
+
changed_width = 720
|
214 |
+
changed_height = 1280
|
215 |
+
return changed_width, changed_height, gr.update()
|
216 |
+
elif target_ratio == "16:9":
|
217 |
+
changed_width = 1280
|
218 |
+
changed_height = 720
|
219 |
+
return changed_width, changed_height, gr.update()
|
220 |
+
elif target_ratio == "1:1":
|
221 |
+
changed_width = 1024
|
222 |
+
changed_height = 1024
|
223 |
+
return changed_width, changed_height, gr.update()
|
224 |
+
elif target_ratio == "Custom":
|
225 |
+
return ui_width, ui_height, gr.update(open=True)
|
226 |
+
|
227 |
+
def select_the_right_preset(user_width, user_height):
|
228 |
+
if user_width == 720 and user_height == 1280:
|
229 |
+
return "9:16"
|
230 |
+
elif user_width == 1280 and user_height == 720:
|
231 |
+
return "16:9"
|
232 |
+
elif user_width == 1024 and user_height == 1024:
|
233 |
+
return "1:1"
|
234 |
+
else:
|
235 |
+
return "Custom"
|
236 |
+
|
237 |
+
def toggle_custom_resize_slider(resize_option):
|
238 |
+
return gr.update(visible=(resize_option == "Custom"))
|
239 |
+
|
240 |
+
def update_history(new_image, history):
|
241 |
+
"""Updates the history gallery with the new image."""
|
242 |
+
if history is None:
|
243 |
+
history = []
|
244 |
+
history.insert(0, new_image)
|
245 |
return history
|
246 |
|
247 |
+
css = """
|
248 |
+
.gradio-container {
|
249 |
+
width: 1200px !important;
|
250 |
+
}
|
251 |
+
h1 { text-align: center; }
|
252 |
+
footer { visibility: hidden; }
|
253 |
+
"""
|
254 |
|
255 |
+
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
|
256 |
+
"""
|
257 |
with gr.Blocks(css=css) as demo:
|
258 |
gr.HTML(title)
|
259 |
with gr.Row():
|