Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,172 +2,258 @@ import gradio as gr
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from diffusers import AutoencoderKL, TCDScheduler
|
| 5 |
-
|
| 6 |
-
from controlnet_union import ControlNetModel_Union
|
| 7 |
-
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
| 8 |
from gradio_imageslider import ImageSlider
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
from PIL import Image, ImageDraw
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
-
|
| 15 |
-
# (Either manual download or via from_pretrained)
|
| 16 |
-
controlnet_model = ControlNetModel_Union.from_pretrained(
|
| 17 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
vae = AutoencoderKL.from_pretrained(
|
| 23 |
-
"madebyollin/sdxl-vae-fp16-fix",
|
| 24 |
-
torch_dtype=torch.float16
|
| 25 |
).to("cuda")
|
| 26 |
|
| 27 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 28 |
"SG161222/RealVisXL_V5.0_Lightning",
|
| 29 |
torch_dtype=torch.float16,
|
| 30 |
vae=vae,
|
| 31 |
-
controlnet=
|
| 32 |
variant="fp16",
|
| 33 |
).to("cuda")
|
|
|
|
| 34 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 35 |
|
| 36 |
-
# --- Utility functions ---
|
| 37 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
|
|
|
| 38 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
| 39 |
return False
|
| 40 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
| 41 |
return False
|
| 42 |
return True
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
def prepare_image_and_mask(image, width, height, overlap_percentage,
|
| 46 |
-
resize_option, custom_resize_percentage,
|
| 47 |
-
alignment, overlap_left, overlap_right,
|
| 48 |
-
overlap_top, overlap_bottom):
|
| 49 |
-
target = (width, height)
|
| 50 |
-
scale = min(target[0] / image.width, target[1] / image.height)
|
| 51 |
-
w, h = int(image.width * scale), int(image.height * scale)
|
| 52 |
-
src = image.resize((w, h), Image.LANCZOS)
|
| 53 |
-
|
| 54 |
-
# Resize percentage
|
| 55 |
-
if resize_option == "Full": pct = 100
|
| 56 |
-
elif resize_option == "50%": pct = 50
|
| 57 |
-
elif resize_option == "33%": pct = 33
|
| 58 |
-
elif resize_option == "25%": pct = 25
|
| 59 |
-
else: pct = custom_resize_percentage
|
| 60 |
-
|
| 61 |
-
rw, rh = max(int(src.width * pct / 100), 64), max(int(src.height * pct / 100), 64)
|
| 62 |
-
src = src.resize((rw, rh), Image.LANCZOS)
|
| 63 |
-
|
| 64 |
-
ox = max(int(rw * overlap_percentage / 100), 1)
|
| 65 |
-
oy = max(int(rh * overlap_percentage / 100), 1)
|
| 66 |
-
|
| 67 |
-
# Margins
|
| 68 |
-
if alignment == "Middle": mx, my = (width - rw)//2, (height - rh)//2
|
| 69 |
-
elif alignment == "Left": mx, my = 0, (height - rh)//2
|
| 70 |
-
elif alignment == "Right": mx, my = width - rw, (height - rh)//2
|
| 71 |
-
elif alignment == "Top": mx, my = (width - rw)//2, 0
|
| 72 |
-
else: mx, my = (width - rw)//2, height - rh
|
| 73 |
-
|
| 74 |
-
mx, my = max(0, min(mx, width - rw)), max(0, min(my, height - rh))
|
| 75 |
-
|
| 76 |
-
bg = Image.new("RGB", target, (255,255,255))
|
| 77 |
-
bg.paste(src, (mx, my))
|
| 78 |
-
|
| 79 |
-
mask = Image.new("L", target, 255)
|
| 80 |
-
d = ImageDraw.Draw(mask)
|
| 81 |
-
|
| 82 |
-
lx = mx + (ox if overlap_left else 2)
|
| 83 |
-
rx = mx + rw - (ox if overlap_right else 2)
|
| 84 |
-
ty = my + (oy if overlap_top else 2)
|
| 85 |
-
by = my + rh - (oy if overlap_bottom else 2)
|
| 86 |
-
|
| 87 |
-
# Edge adjustments
|
| 88 |
-
if alignment == "Left": lx = mx + (ox if overlap_left else 0)
|
| 89 |
-
if alignment == "Right": rx = mx + rw - (ox if overlap_right else 0)
|
| 90 |
-
if alignment == "Top": ty = my + (oy if overlap_top else 0)
|
| 91 |
-
if alignment == "Bottom": by = my + rh - (oy if overlap_bottom else 0)
|
| 92 |
-
|
| 93 |
-
d.rectangle([(lx, ty), (rx, by)], fill=0)
|
| 94 |
-
return bg, mask
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def preview_image_and_mask(*args):
|
| 98 |
-
bg, mask = prepare_image_and_mask(*args)
|
| 99 |
-
vis = bg.copy().convert("RGBA")
|
| 100 |
-
red = Image.new("RGBA", bg.size, (255,0,0,64))
|
| 101 |
-
overlay = Image.new("RGBA", bg.size, (0,0,0,0))
|
| 102 |
-
overlay.paste(red, (0,0), mask)
|
| 103 |
-
return Image.alpha_composite(vis, overlay)
|
| 104 |
-
|
| 105 |
-
# --- Fixed infer: return list for slider ---
|
| 106 |
@spaces.GPU(duration=24)
|
| 107 |
-
def infer(image, width, height, overlap_percentage, num_inference_steps,
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
background, mask = prepare_image_and_mask(
|
| 111 |
-
image, width, height, overlap_percentage,
|
| 112 |
-
resize_option, custom_resize_percentage,
|
| 113 |
-
alignment, overlap_left, overlap_right,
|
| 114 |
-
overlap_top, overlap_bottom
|
| 115 |
-
)
|
| 116 |
if not can_expand(background.width, background.height, width, height, alignment):
|
| 117 |
alignment = "Middle"
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
|
| 122 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
| 123 |
-
embeds = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 124 |
-
|
| 125 |
-
# Run pipeline and grab last frame
|
| 126 |
-
gen = pipe(
|
| 127 |
-
prompt_embeds=embeds[0],
|
| 128 |
-
negative_prompt_embeds=embeds[1],
|
| 129 |
-
pooled_prompt_embeds=embeds[2],
|
| 130 |
-
negative_pooled_prompt_embeds=embeds[3],
|
| 131 |
-
image=hole,
|
| 132 |
-
num_inference_steps=num_inference_steps
|
| 133 |
-
)
|
| 134 |
-
last = None
|
| 135 |
-
for img in gen:
|
| 136 |
-
last = img
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
|
|
|
| 144 |
|
| 145 |
def clear_result():
|
|
|
|
| 146 |
return gr.update(value=None)
|
| 147 |
|
| 148 |
-
def preload_presets(
|
| 149 |
-
|
| 150 |
-
if
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
return history
|
| 167 |
|
| 168 |
-
css = "
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
|
|
|
|
|
|
| 171 |
with gr.Blocks(css=css) as demo:
|
| 172 |
gr.HTML(title)
|
| 173 |
with gr.Row():
|
|
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from diffusers import AutoencoderKL, TCDScheduler
|
| 5 |
+
from diffusers.models.model_loading_utils import load_state_dict
|
|
|
|
|
|
|
| 6 |
from gradio_imageslider import ImageSlider
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
+
from controlnet_union import ControlNetModel_Union
|
| 10 |
+
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
| 11 |
+
|
| 12 |
from PIL import Image, ImageDraw
|
| 13 |
import numpy as np
|
| 14 |
|
| 15 |
+
config_file = hf_hub_download(
|
|
|
|
|
|
|
| 16 |
"xinsir/controlnet-union-sdxl-1.0",
|
| 17 |
+
filename="config_promax.json",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
config = ControlNetModel_Union.load_config(config_file)
|
| 21 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
| 22 |
+
model_file = hf_hub_download(
|
| 23 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
| 24 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
sstate_dict = load_state_dict(model_file)
|
| 28 |
+
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 29 |
+
controlnet_model, sstate_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 30 |
+
)
|
| 31 |
+
model.to(device="cuda", dtype=torch.float16)
|
| 32 |
+
#----------------------
|
| 33 |
|
| 34 |
vae = AutoencoderKL.from_pretrained(
|
| 35 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
|
| 36 |
).to("cuda")
|
| 37 |
|
| 38 |
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 39 |
"SG161222/RealVisXL_V5.0_Lightning",
|
| 40 |
torch_dtype=torch.float16,
|
| 41 |
vae=vae,
|
| 42 |
+
controlnet=model,
|
| 43 |
variant="fp16",
|
| 44 |
).to("cuda")
|
| 45 |
+
|
| 46 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 47 |
|
|
|
|
| 48 |
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
| 49 |
+
"""Checks if the image can be expanded based on the alignment."""
|
| 50 |
if alignment in ("Left", "Right") and source_width >= target_width:
|
| 51 |
return False
|
| 52 |
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
| 53 |
return False
|
| 54 |
return True
|
| 55 |
|
| 56 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 57 |
+
target_size = (width, height)
|
| 58 |
+
|
| 59 |
+
# Calculate the scaling factor to fit the image within the target size
|
| 60 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
| 61 |
+
new_width = int(image.width * scale_factor)
|
| 62 |
+
new_height = int(image.height * scale_factor)
|
| 63 |
+
|
| 64 |
+
# Resize the source image to fit within target size
|
| 65 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
| 66 |
+
|
| 67 |
+
# Apply resize option using percentages
|
| 68 |
+
if resize_option == "Full":
|
| 69 |
+
resize_percentage = 100
|
| 70 |
+
elif resize_option == "50%":
|
| 71 |
+
resize_percentage = 50
|
| 72 |
+
elif resize_option == "33%":
|
| 73 |
+
resize_percentage = 33
|
| 74 |
+
elif resize_option == "25%":
|
| 75 |
+
resize_percentage = 25
|
| 76 |
+
else: # Custom
|
| 77 |
+
resize_percentage = custom_resize_percentage
|
| 78 |
+
|
| 79 |
+
# Calculate new dimensions based on percentage
|
| 80 |
+
resize_factor = resize_percentage / 100
|
| 81 |
+
new_width = int(source.width * resize_factor)
|
| 82 |
+
new_height = int(source.height * resize_factor)
|
| 83 |
+
|
| 84 |
+
# Ensure minimum size of 64 pixels
|
| 85 |
+
new_width = max(new_width, 64)
|
| 86 |
+
new_height = max(new_height, 64)
|
| 87 |
+
|
| 88 |
+
# Resize the image
|
| 89 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
| 90 |
+
|
| 91 |
+
# Calculate the overlap in pixels based on the percentage
|
| 92 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
| 93 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
| 94 |
+
|
| 95 |
+
# Ensure minimum overlap of 1 pixel
|
| 96 |
+
overlap_x = max(overlap_x, 1)
|
| 97 |
+
overlap_y = max(overlap_y, 1)
|
| 98 |
+
|
| 99 |
+
# Calculate margins based on alignment
|
| 100 |
+
if alignment == "Middle":
|
| 101 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 102 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 103 |
+
elif alignment == "Left":
|
| 104 |
+
margin_x = 0
|
| 105 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 106 |
+
elif alignment == "Right":
|
| 107 |
+
margin_x = target_size[0] - new_width
|
| 108 |
+
margin_y = (target_size[1] - new_height) // 2
|
| 109 |
+
elif alignment == "Top":
|
| 110 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 111 |
+
margin_y = 0
|
| 112 |
+
elif alignment == "Bottom":
|
| 113 |
+
margin_x = (target_size[0] - new_width) // 2
|
| 114 |
+
margin_y = target_size[1] - new_height
|
| 115 |
+
|
| 116 |
+
# Adjust margins to eliminate gaps
|
| 117 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
| 118 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
| 119 |
+
|
| 120 |
+
# Create a new background image and paste the resized source image
|
| 121 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
| 122 |
+
background.paste(source, (margin_x, margin_y))
|
| 123 |
+
|
| 124 |
+
# Create the mask
|
| 125 |
+
mask = Image.new('L', target_size, 255)
|
| 126 |
+
mask_draw = ImageDraw.Draw(mask)
|
| 127 |
+
|
| 128 |
+
# Calculate overlap areas
|
| 129 |
+
white_gaps_patch = 2
|
| 130 |
+
|
| 131 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
| 132 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
| 133 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
| 134 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
| 135 |
+
|
| 136 |
+
if alignment == "Left":
|
| 137 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
| 138 |
+
elif alignment == "Right":
|
| 139 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
| 140 |
+
elif alignment == "Top":
|
| 141 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
| 142 |
+
elif alignment == "Bottom":
|
| 143 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Draw the mask
|
| 147 |
+
mask_draw.rectangle([
|
| 148 |
+
(left_overlap, top_overlap),
|
| 149 |
+
(right_overlap, bottom_overlap)
|
| 150 |
+
], fill=0)
|
| 151 |
+
|
| 152 |
+
return background, mask
|
| 153 |
+
|
| 154 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 155 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 156 |
+
|
| 157 |
+
# Create a preview image showing the mask
|
| 158 |
+
preview = background.copy().convert('RGBA')
|
| 159 |
+
|
| 160 |
+
# Create a semi-transparent red overlay
|
| 161 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity)
|
| 162 |
+
|
| 163 |
+
# Convert black pixels in the mask to semi-transparent red
|
| 164 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
| 165 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
| 166 |
+
|
| 167 |
+
# Overlay the red mask on the background
|
| 168 |
+
preview = Image.alpha_composite(preview, red_mask)
|
| 169 |
+
|
| 170 |
+
return preview
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
@spaces.GPU(duration=24)
|
| 173 |
+
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
| 174 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
| 175 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
if not can_expand(background.width, background.height, width, height, alignment):
|
| 177 |
alignment = "Middle"
|
| 178 |
|
| 179 |
+
cnet_image = background.copy()
|
| 180 |
+
cnet_image.paste(0, (0, 0), mask)
|
| 181 |
|
| 182 |
final_prompt = f"{prompt_input} , high quality, 4k"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
(
|
| 185 |
+
prompt_embeds,
|
| 186 |
+
negative_prompt_embeds,
|
| 187 |
+
pooled_prompt_embeds,
|
| 188 |
+
negative_pooled_prompt_embeds,
|
| 189 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
| 190 |
+
|
| 191 |
+
for image in pipe(
|
| 192 |
+
prompt_embeds=prompt_embeds,
|
| 193 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 194 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 195 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 196 |
+
image=cnet_image,
|
| 197 |
+
num_inference_steps=num_inference_steps
|
| 198 |
+
):
|
| 199 |
+
yield cnet_image, image
|
| 200 |
|
| 201 |
+
image = image.convert("RGBA")
|
| 202 |
+
cnet_image.paste(image, (0, 0), mask)
|
| 203 |
|
| 204 |
+
yield background, cnet_image
|
| 205 |
|
| 206 |
def clear_result():
|
| 207 |
+
"""Clears the result ImageSlider."""
|
| 208 |
return gr.update(value=None)
|
| 209 |
|
| 210 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
| 211 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
| 212 |
+
if target_ratio == "9:16":
|
| 213 |
+
changed_width = 720
|
| 214 |
+
changed_height = 1280
|
| 215 |
+
return changed_width, changed_height, gr.update()
|
| 216 |
+
elif target_ratio == "16:9":
|
| 217 |
+
changed_width = 1280
|
| 218 |
+
changed_height = 720
|
| 219 |
+
return changed_width, changed_height, gr.update()
|
| 220 |
+
elif target_ratio == "1:1":
|
| 221 |
+
changed_width = 1024
|
| 222 |
+
changed_height = 1024
|
| 223 |
+
return changed_width, changed_height, gr.update()
|
| 224 |
+
elif target_ratio == "Custom":
|
| 225 |
+
return ui_width, ui_height, gr.update(open=True)
|
| 226 |
+
|
| 227 |
+
def select_the_right_preset(user_width, user_height):
|
| 228 |
+
if user_width == 720 and user_height == 1280:
|
| 229 |
+
return "9:16"
|
| 230 |
+
elif user_width == 1280 and user_height == 720:
|
| 231 |
+
return "16:9"
|
| 232 |
+
elif user_width == 1024 and user_height == 1024:
|
| 233 |
+
return "1:1"
|
| 234 |
+
else:
|
| 235 |
+
return "Custom"
|
| 236 |
+
|
| 237 |
+
def toggle_custom_resize_slider(resize_option):
|
| 238 |
+
return gr.update(visible=(resize_option == "Custom"))
|
| 239 |
+
|
| 240 |
+
def update_history(new_image, history):
|
| 241 |
+
"""Updates the history gallery with the new image."""
|
| 242 |
+
if history is None:
|
| 243 |
+
history = []
|
| 244 |
+
history.insert(0, new_image)
|
| 245 |
return history
|
| 246 |
|
| 247 |
+
css = """
|
| 248 |
+
.gradio-container {
|
| 249 |
+
width: 1200px !important;
|
| 250 |
+
}
|
| 251 |
+
h1 { text-align: center; }
|
| 252 |
+
footer { visibility: hidden; }
|
| 253 |
+
"""
|
| 254 |
|
| 255 |
+
title = """<h1 align="center">Diffusers Image Outpaint Lightning</h1>
|
| 256 |
+
"""
|
| 257 |
with gr.Blocks(css=css) as demo:
|
| 258 |
gr.HTML(title)
|
| 259 |
with gr.Row():
|