File size: 26,038 Bytes
a85c4cf
 
 
 
 
 
a29f7c2
a165b0a
a29f7c2
573a8ee
218cef6
3541fa7
a85c4cf
 
 
 
 
 
 
a29f7c2
a85c4cf
e84f6e6
 
 
 
a85c4cf
 
 
 
 
 
 
 
a29f7c2
a85c4cf
a29f7c2
a165b0a
a29f7c2
2bd3ee0
 
 
035efc4
069b3ac
3541fa7
035efc4
 
 
 
 
a29f7c2
 
 
 
 
 
 
a85c4cf
a29f7c2
 
 
 
 
 
 
 
 
035efc4
3541fa7
035efc4
 
3541fa7
 
035efc4
3541fa7
035efc4
 
3541fa7
035efc4
a29f7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a165b0a
a29f7c2
 
 
 
 
 
 
 
 
 
 
 
a165b0a
a29f7c2
 
 
 
 
 
 
 
 
 
 
035efc4
218cef6
 
 
 
 
 
 
035efc4
218cef6
 
 
 
 
 
 
 
 
035efc4
218cef6
 
 
 
 
035efc4
 
218cef6
 
 
 
035efc4
 
218cef6
 
 
 
 
 
 
 
 
 
 
 
035efc4
218cef6
 
035efc4
218cef6
 
 
 
035efc4
218cef6
 
 
035efc4
 
 
14bfced
 
 
 
 
 
 
 
 
cdb6c59
035efc4
 
 
 
 
 
 
14bfced
 
d5c677b
14bfced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218cef6
035efc4
a85c4cf
 
035efc4
 
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035efc4
7edb1fe
a85c4cf
 
 
 
 
 
 
 
 
035efc4
 
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035efc4
a85c4cf
 
 
035efc4
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b24dc9
 
a85c4cf
 
7b24dc9
a85c4cf
7b24dc9
 
 
 
a85c4cf
7b24dc9
 
 
a85c4cf
 
7b24dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85c4cf
c44519e
 
 
 
 
 
 
 
 
 
 
 
a29f7c2
e84f6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035efc4
2bd3ee0
 
 
 
 
 
 
 
 
 
035efc4
2bd3ee0
 
035efc4
2bd3ee0
 
 
 
 
 
 
 
 
035efc4
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd3ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
a85c4cf
 
 
 
 
 
 
 
 
 
 
035efc4
 
 
 
 
 
 
 
 
a85c4cf
 
 
 
035efc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a29f7c2
 
14bfced
a29f7c2
 
 
 
 
 
 
573a8ee
 
 
 
 
 
f485ff1
a29f7c2
 
a85c4cf
 
14bfced
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
a29f7c2
a85c4cf
218cef6
 
 
 
14bfced
218cef6
 
 
 
 
14bfced
218cef6
 
 
 
 
14bfced
 
6d8a748
14bfced
 
 
 
e84f6e6
 
 
 
 
 
 
 
 
 
035efc4
e84f6e6
 
 
 
 
 
 
 
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
035efc4
a85c4cf
035efc4
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bfced
a85c4cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947a01
 
 
 
 
 
 
 
 
 
2bd3ee0
 
1947a01
377ae75
1947a01
e84f6e6
377ae75
2bd3ee0
2e0df40
7b24dc9
1947a01
 
 
 
 
 
3541fa7
1947a01
 
 
56aa407
f76444e
 
49d0c17
f76444e
1947a01
56aa407
a85c4cf
56aa407
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import os
import random
import uuid
import json
import time
import asyncio
import tempfile
from threading import Thread
import base64
import shutil
import re
from io import BytesIO

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import trimesh

import supervision as sv
from ultralytics import YOLO as YOLODetector
from huggingface_hub import hf_hub_download

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image

from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply

# Additional import for Phi-4 multimodality (audio support)
import soundfile as sf

# Install additional dependencies if needed
os.system('pip install backoff')

# --- File validation constants ---
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
AUDIO_EXTENSIONS = ['.wav', '.mp3', '.flac', '.ogg']

# --- Global constants and helper functions ---

MAX_SEED = np.iinfo(np.int32).max

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def glb_to_data_url(glb_path: str) -> str:
    """
    Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
    """
    with open(glb_path, "rb") as f:
        data = f.read()
    b64_data = base64.b64encode(data).decode("utf-8")
    return f"data:model/gltf-binary;base64,{b64_data}"

def load_audio_file(file):
    """
    Loads an audio file. If file is a string path, it reads directly.
    Otherwise, assumes file is a file-like object.
    """
    if isinstance(file, str):
        audio, samplerate = sf.read(file)
    else:
        audio, samplerate = sf.read(BytesIO(file.read()))
    return audio, samplerate

# --- Model class for Text-to-3D Generation (ShapE) ---

class Model:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
        self.pipe.to(self.device)
        if torch.cuda.is_available():
            try:
                self.pipe.text_encoder = self.pipe.text_encoder.half()
            except AttributeError:
                pass

        self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
        self.pipe_img.to(self.device)
        if torch.cuda.is_available():
            text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
            if text_encoder_img is not None:
                self.pipe_img.text_encoder = text_encoder_img.half()

    def to_glb(self, ply_path: str) -> str:
        mesh = trimesh.load(ply_path)
        rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
        mesh.apply_transform(rot)
        rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
        mesh.apply_transform(rot)
        mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
        mesh.export(mesh_path.name, file_type="glb")
        return mesh_path.name

    def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe(
            prompt,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

    def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe_img(
            image,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

# --- New Tools for Web Functionality using DuckDuckGo and smolagents ---

from typing import Any, Optional
from smolagents.tools import Tool
import duckduckgo_search

class DuckDuckGoSearchTool(Tool):
    name = "web_search"
    description = "Performs a duckduckgo web search based on your query then returns the top search results."
    inputs = {'query': {'type': 'string', 'description': 'The search query to perform.'}}
    output_type = "string"

    def __init__(self, max_results=10, **kwargs):
        super().__init__()
        self.max_results = max_results
        try:
            from duckduckgo_search import DDGS
        except ImportError as e:
            raise ImportError("Install duckduckgo-search via pip.") from e
        self.ddgs = DDGS(**kwargs)

    def forward(self, query: str) -> str:
        results = self.ddgs.text(query, max_results=self.max_results)
        if len(results) == 0:
            raise Exception("No results found! Try a less restrictive query.")
        postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results]
        return "## Search Results\n\n" + "\n\n".join(postprocessed_results)

class VisitWebpageTool(Tool):
    name = "visit_webpage"
    description = "Visits a webpage at the given URL and returns its content as markdown."
    inputs = {'url': {'type': 'string', 'description': 'The URL of the webpage to visit.'}}
    output_type = "string"

    def __init__(self, *args, **kwargs):
        self.is_initialized = False

    def forward(self, url: str) -> str:
        try:
            import requests
            from markdownify import markdownify
            from requests.exceptions import RequestException
            from smolagents.utils import truncate_content
        except ImportError as e:
            raise ImportError("Install markdownify and requests via pip.") from e
        try:
            response = requests.get(url, timeout=20)
            response.raise_for_status()
            markdown_content = markdownify(response.text).strip()
            markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
            return truncate_content(markdown_content, 10000)
        except requests.exceptions.Timeout:
            return "The request timed out. Please try again later."
        except RequestException as e:
            return f"Error fetching the webpage: {str(e)}"
        except Exception as e:
            return f"Unexpected error: {str(e)}"

# --- rAgent Reasoning using Llama mode OpenAI ---

from openai import OpenAI

ACCESS_TOKEN = os.getenv("HF_TOKEN")
ragent_client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

SYSTEM_PROMPT = """
        "You are an expert assistant who solves tasks using Python code. Follow these steps:
        1. Thought: Explain your reasoning and plan.
        2. Code: Write Python code to implement your solution.
        3. Observation: Analyze the output.
        4. Final Answer: Provide a concise conclusion.
        
        Task: {task}"
"""

def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
    messages = [{"role": "system", "content": SYSTEM_PROMPT}]
    for msg in history:
        if msg.get("role") == "user":
            messages.append({"role": "user", "content": msg["content"]})
        elif msg.get("role") == "assistant":
            messages.append({"role": "assistant", "content": msg["content"]})
    messages.append({"role": "user", "content": prompt})
    response = ""
    stream = ragent_client.chat.completions.create(
         model="meta-llama/Meta-Llama-3.1-8B-Instruct",
         max_tokens=max_tokens,
         stream=True,
         temperature=temperature,
         top_p=top_p,
         messages=messages,
    )
    for message in stream:
         token = message.choices[0].delta.content
         response += token
         yield response

# --- Gradio UI configuration ---

DESCRIPTION = """
# Agent Dino 🌠
"""

css = '''
h1 {
  text-align: center;
  display: block;
}
#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# --- Load Models and Pipelines for Chat, Image, and Multimodal Processing ---
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",
    "en-US-GuyNeural",
]

MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))

sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()
if USE_TORCH_COMPILE:
    sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

def save_image(img: Image.Image) -> str:
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)
    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True
    images = []
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

@spaces.GPU(duration=120, enable_queue=True)
def generate_3d_fn(
    prompt: str,
    seed: int = 1,
    guidance_scale: float = 15.0,
    num_steps: int = 64,
    randomize_seed: bool = False,
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    model3d = Model()
    glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
    return glb_path, seed

YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
YOLO_CHECKPOINT_NAME = "images/demo.pt"
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
yolo_detector = YOLODetector(yolo_model_path)

def detect_objects(image: np.ndarray):
    results = yolo_detector(image, verbose=False)[0]
    detections = sv.Detections.from_ultralytics(results).with_nms()
    box_annotator = sv.BoxAnnotator()
    label_annotator = sv.LabelAnnotator()
    annotated_image = image.copy()
    annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections)
    annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
    return Image.fromarray(annotated_image)

# --- Phi-4 Multimodal Model Setup with Text Streaming ---
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
phi4_model = AutoModelForCausalLM.from_pretrained(
    phi4_model_path,
    device_map="auto",
    torch_dtype="auto",
    trust_remote_code=True,
    _attn_implementation="eager",
)

def process_phi4(input_type: str, file: str, question: str, max_new_tokens: int = 200):
    """
    Process an image or audio input with the Phi-4 multimodal model.
    Expects input_type to be either 'image' or 'audio' and file is a file path.
    """
    user_prompt = '<|user|>'
    assistant_prompt = '<|assistant|>'
    prompt_suffix = '<|end|>'
    
    if not file or not question:
        yield "Please upload a file and provide a question."
        return

    try:
        if input_type == "image":
            prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
            image = load_image(file)
            inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
        elif input_type == "audio":
            prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
            audio, samplerate = load_audio_file(file)
            inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
        else:
            yield "Invalid input type selected. Use 'image' or 'audio'."
            return
    except Exception as e:
        yield f"Error loading file: {str(e)}"
        return

    streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    yield "πŸ€” Thinking..."
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input and special commands.
    Special commands include:
      - "@tts1" or "@tts2": Text-to-speech.
      - "@image": Image generation using the SDXL pipeline.
      - "@3d": 3D model generation using the ShapE pipeline.
      - "@web": Web search or webpage visit.
      - "@ragent": Reasoning chain using Llama mode.
      - "@yolo": Object detection using YOLO.
      - "@phi4": Processes image or audio inputs with the Phi-4 model and streams text output.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # --- Phi-4 Multimodal branch with text streaming ---
    if text.strip().lower().startswith("@phi4"):
        parts = text.strip().split(maxsplit=2)
        if len(parts) < 3:
            yield "Error: Please provide input type and a question. Format: '@phi4 [image|audio] <your question>'"
            return
        input_type = parts[1].lower()
        question = parts[2]
        
        if not files or len(files) == 0:
            yield "Error: Please attach an image or audio file for Phi-4 processing."
            return
        
        if len(files) > 1:
            yield "Warning: Multiple files attached. Only the first file will be processed."
        
        file_input = files[0]  # This is a string path from gr.MultimodalTextbox
        
        extension = os.path.splitext(file_input)[1].lower()
        if input_type == "image" and extension not in IMAGE_EXTENSIONS:
            yield f"Error: Attached file is not an image. Expected extensions: {', '.join(IMAGE_EXTENSIONS)}"
            return
        elif input_type == "audio" and extension not in AUDIO_EXTENSIONS:
            yield f"Error: Attached file is not an audio file. Expected extensions: {', '.join(AUDIO_EXTENSIONS)}"
            return
        
        yield "πŸ”„ Processing multimodal input with Phi-4..."
        try:
            for partial in process_phi4(input_type, file_input, question):
                yield partial
        except Exception as e:
            yield f"Error processing file: {str(e)}"
        return

    # --- Other branches remain unchanged ---
    if text.strip().lower().startswith("@3d"):
        prompt = text[len("@3d"):].strip()
        yield "πŸŒ€ Hold tight, generating a 3D mesh GLB file....."
        glb_path, used_seed = generate_3d_fn(
            prompt=prompt,
            seed=1,
            guidance_scale=15.0,
            num_steps=64,
            randomize_seed=True,
        )
        static_folder = os.path.join(os.getcwd(), "static")
        if not os.path.exists(static_folder):
            os.makedirs(static_folder)
        new_filename = f"mesh_{uuid.uuid4()}.glb"
        new_filepath = os.path.join(static_folder, new_filename)
        shutil.copy(glb_path, new_filepath)
        yield gr.File(new_filepath)
        return

    if text.strip().lower().startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield "πŸͺ§ Generating image..."
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            negative_prompt="",
            use_negative_prompt=False,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            num_inference_steps=25,
            randomize_seed=True,
            use_resolution_binning=True,
            num_images=1,
        )
        yield gr.Image(image_paths[0])
        return

    if text.strip().lower().startswith("@web"):
        web_command = text[len("@web"):].strip()
        if web_command.lower().startswith("visit"):
            url = web_command[len("visit"):].strip()
            yield "🌍 Visiting webpage..."
            visitor = VisitWebpageTool()
            content = visitor.forward(url)
            yield content
        else:
            query = web_command
            yield "🧀 Performing a web search ..."
            searcher = DuckDuckGoSearchTool()
            results = searcher.forward(query)
            yield results
        return

    if text.strip().lower().startswith("@ragent"):
        prompt = text[len("@ragent"):].strip()
        yield "πŸ“ Initiating reasoning chain using Llama mode..."
        for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
            yield partial
        return

    if text.strip().lower().startswith("@yolo"):
        yield "πŸ” Running object detection with YOLO..."
        if not files or len(files) == 0:
            yield "Error: Please attach an image for YOLO object detection."
            return
        input_file = files[0]
        try:
            if isinstance(input_file, str):
                pil_image = Image.open(input_file)
            else:
                pil_image = Image.open(input_file)
        except Exception as e:
            yield f"Error loading image: {str(e)}"
            return
        np_image = np.array(pil_image)
        result_img = detect_objects(np_image)
        yield gr.Image(result_img)
        return

    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})
    if files:
        if len(files) > 1:
            images = [load_image(file) for file in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield "πŸ€” Thinking..."
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response
        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [{"text": "@phi4 Solve the problem", "files": ["examples/math.webp"]}],
        [{"text": "@phi4 Transcribe the audio to text.", "files": ["examples/harvard.wav"]}],
        ["@tts2 What causes rainbows to form?"],
        ["@image Chocolate dripping from a donut"],
        ["@3d A birthday cupcake with cherry"],
        [{"text": "Summarize the letter", "files": ["examples/1.png"]}],
        [{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
        ["@ragent Explain how a binary search algorithm works."],
        ["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning ?"],
        ["@tts1 Explain Tower of Hanoi"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "audio"], file_count="multiple", placeholder="@tts1, @tts2, @image, @3d, @ragent, @web, @yolo, @phi4 - audio, image, or plain text"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if not os.path.exists("static"):
    os.makedirs("static")

from fastapi.staticfiles import StaticFiles
demo.app.mount("/static", StaticFiles(directory="static"), name="static")

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)