Spaces:
Running
on
Zero
Running
on
Zero
Update pipeline_stable_diffusion_xl_instantid_img2img.py
Browse files
pipeline_stable_diffusion_xl_instantid_img2img.py
CHANGED
@@ -1,18 +1,3 @@
|
|
1 |
-
# Copyright 2024 The InstantX Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
|
16 |
import math
|
17 |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
|
@@ -21,55 +6,35 @@ import numpy as np
|
|
21 |
import PIL.Image
|
22 |
import torch
|
23 |
import torch.nn as nn
|
24 |
-
|
25 |
from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
|
26 |
from diffusers.image_processor import PipelineImageInput
|
27 |
from diffusers.models import ControlNetModel
|
28 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
29 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
30 |
-
from diffusers.utils import
|
31 |
-
deprecate,
|
32 |
-
logging,
|
33 |
-
replace_example_docstring,
|
34 |
-
)
|
35 |
from diffusers.utils.import_utils import is_xformers_available
|
36 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
37 |
|
|
|
38 |
|
|
|
39 |
try:
|
40 |
import xformers
|
41 |
import xformers.ops
|
42 |
|
43 |
xformers_available = True
|
44 |
-
except
|
45 |
xformers_available = False
|
46 |
|
47 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
-
|
49 |
-
|
50 |
-
def FeedForward(dim, mult=4):
|
51 |
-
inner_dim = int(dim * mult)
|
52 |
-
return nn.Sequential(
|
53 |
-
nn.LayerNorm(dim),
|
54 |
-
nn.Linear(dim, inner_dim, bias=False),
|
55 |
-
nn.GELU(),
|
56 |
-
nn.Linear(inner_dim, dim, bias=False),
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
bs, length, width = x.shape
|
62 |
-
|
63 |
-
x = x.view(bs, length, heads, -1)
|
64 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
65 |
-
x = x.transpose(1, 2)
|
66 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
67 |
-
x = x.reshape(bs, heads, length, -1)
|
68 |
-
return x
|
69 |
|
70 |
|
71 |
class PerceiverAttention(nn.Module):
|
72 |
-
def __init__(self,
|
73 |
super().__init__()
|
74 |
self.scale = dim_head**-0.5
|
75 |
self.dim_head = dim_head
|
@@ -78,995 +43,96 @@ class PerceiverAttention(nn.Module):
|
|
78 |
|
79 |
self.norm1 = nn.LayerNorm(dim)
|
80 |
self.norm2 = nn.LayerNorm(dim)
|
81 |
-
|
82 |
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
83 |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
84 |
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
85 |
|
86 |
-
def forward(self, x, latents):
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
shape (b, n1, D)
|
91 |
-
latent (torch.Tensor): latent features
|
92 |
-
shape (b, n2, D)
|
93 |
-
"""
|
94 |
-
x = self.norm1(x)
|
95 |
-
latents = self.norm2(latents)
|
96 |
-
|
97 |
-
b, l, _ = latents.shape
|
98 |
|
99 |
-
q = self.
|
100 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
101 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
102 |
|
103 |
-
|
104 |
-
k = reshape_tensor(k, self.heads)
|
105 |
-
v = reshape_tensor(v, self.heads)
|
106 |
-
|
107 |
-
# attention
|
108 |
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
109 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1)
|
110 |
-
weight = torch.softmax(weight.float(), dim=-1).
|
111 |
out = weight @ v
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
return self.to_out(out)
|
116 |
|
117 |
|
118 |
class Resampler(nn.Module):
|
119 |
def __init__(
|
120 |
self,
|
121 |
-
dim=1024,
|
122 |
-
depth=8,
|
123 |
-
dim_head=64,
|
124 |
-
heads=16,
|
125 |
-
num_queries=8,
|
126 |
-
embedding_dim=768,
|
127 |
-
output_dim=1024,
|
128 |
-
ff_mult=4,
|
129 |
):
|
130 |
super().__init__()
|
131 |
-
|
132 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
133 |
-
|
134 |
self.proj_in = nn.Linear(embedding_dim, dim)
|
135 |
-
|
136 |
self.proj_out = nn.Linear(dim, output_dim)
|
137 |
self.norm_out = nn.LayerNorm(output_dim)
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
self.layers.append(
|
142 |
-
nn.ModuleList(
|
143 |
-
[
|
144 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
145 |
-
FeedForward(dim=dim, mult=ff_mult),
|
146 |
-
]
|
147 |
-
)
|
148 |
-
)
|
149 |
-
|
150 |
-
def forward(self, x):
|
151 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
152 |
x = self.proj_in(x)
|
153 |
|
154 |
-
for attn,
|
155 |
-
latents = attn(x, latents) + latents
|
156 |
-
latents = ff(latents) + latents
|
157 |
-
|
158 |
-
latents = self.proj_out(latents)
|
159 |
-
return self.norm_out(latents)
|
160 |
-
|
161 |
-
|
162 |
-
class AttnProcessor(nn.Module):
|
163 |
-
r"""
|
164 |
-
Default processor for performing attention-related computations.
|
165 |
-
"""
|
166 |
-
|
167 |
-
def __init__(
|
168 |
-
self,
|
169 |
-
hidden_size=None,
|
170 |
-
cross_attention_dim=None,
|
171 |
-
):
|
172 |
-
super().__init__()
|
173 |
-
|
174 |
-
def __call__(
|
175 |
-
self,
|
176 |
-
attn,
|
177 |
-
hidden_states,
|
178 |
-
encoder_hidden_states=None,
|
179 |
-
attention_mask=None,
|
180 |
-
temb=None,
|
181 |
-
):
|
182 |
-
residual = hidden_states
|
183 |
-
|
184 |
-
if attn.spatial_norm is not None:
|
185 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
186 |
-
|
187 |
-
input_ndim = hidden_states.ndim
|
188 |
-
|
189 |
-
if input_ndim == 4:
|
190 |
-
batch_size, channel, height, width = hidden_states.shape
|
191 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
192 |
-
|
193 |
-
batch_size, sequence_length, _ = (
|
194 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
195 |
-
)
|
196 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
197 |
-
|
198 |
-
if attn.group_norm is not None:
|
199 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
200 |
-
|
201 |
-
query = attn.to_q(hidden_states)
|
202 |
-
|
203 |
-
if encoder_hidden_states is None:
|
204 |
-
encoder_hidden_states = hidden_states
|
205 |
-
elif attn.norm_cross:
|
206 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
207 |
-
|
208 |
-
key = attn.to_k(encoder_hidden_states)
|
209 |
-
value = attn.to_v(encoder_hidden_states)
|
210 |
-
|
211 |
-
query = attn.head_to_batch_dim(query)
|
212 |
-
key = attn.head_to_batch_dim(key)
|
213 |
-
value = attn.head_to_batch_dim(value)
|
214 |
-
|
215 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
216 |
-
hidden_states = torch.bmm(attention_probs, value)
|
217 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
218 |
-
|
219 |
-
# linear proj
|
220 |
-
hidden_states = attn.to_out[0](hidden_states)
|
221 |
-
# dropout
|
222 |
-
hidden_states = attn.to_out[1](hidden_states)
|
223 |
-
|
224 |
-
if input_ndim == 4:
|
225 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
226 |
-
|
227 |
-
if attn.residual_connection:
|
228 |
-
hidden_states = hidden_states + residual
|
229 |
-
|
230 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
231 |
-
|
232 |
-
return hidden_states
|
233 |
-
|
234 |
-
|
235 |
-
class IPAttnProcessor(nn.Module):
|
236 |
-
r"""
|
237 |
-
Attention processor for IP-Adapater.
|
238 |
-
Args:
|
239 |
-
hidden_size (`int`):
|
240 |
-
The hidden size of the attention layer.
|
241 |
-
cross_attention_dim (`int`):
|
242 |
-
The number of channels in the `encoder_hidden_states`.
|
243 |
-
scale (`float`, defaults to 1.0):
|
244 |
-
the weight scale of image prompt.
|
245 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
246 |
-
The context length of the image features.
|
247 |
-
"""
|
248 |
-
|
249 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
250 |
-
super().__init__()
|
251 |
-
|
252 |
-
self.hidden_size = hidden_size
|
253 |
-
self.cross_attention_dim = cross_attention_dim
|
254 |
-
self.scale = scale
|
255 |
-
self.num_tokens = num_tokens
|
256 |
-
|
257 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
258 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
259 |
-
|
260 |
-
def __call__(
|
261 |
-
self,
|
262 |
-
attn,
|
263 |
-
hidden_states,
|
264 |
-
encoder_hidden_states=None,
|
265 |
-
attention_mask=None,
|
266 |
-
temb=None,
|
267 |
-
):
|
268 |
-
residual = hidden_states
|
269 |
-
|
270 |
-
if attn.spatial_norm is not None:
|
271 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
272 |
-
|
273 |
-
input_ndim = hidden_states.ndim
|
274 |
-
|
275 |
-
if input_ndim == 4:
|
276 |
-
batch_size, channel, height, width = hidden_states.shape
|
277 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
278 |
-
|
279 |
-
batch_size, sequence_length, _ = (
|
280 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
281 |
-
)
|
282 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
283 |
-
|
284 |
-
if attn.group_norm is not None:
|
285 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
286 |
-
|
287 |
-
query = attn.to_q(hidden_states)
|
288 |
-
|
289 |
-
if encoder_hidden_states is None:
|
290 |
-
encoder_hidden_states = hidden_states
|
291 |
-
else:
|
292 |
-
# get encoder_hidden_states, ip_hidden_states
|
293 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
294 |
-
encoder_hidden_states, ip_hidden_states = (
|
295 |
-
encoder_hidden_states[:, :end_pos, :],
|
296 |
-
encoder_hidden_states[:, end_pos:, :],
|
297 |
-
)
|
298 |
-
if attn.norm_cross:
|
299 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
300 |
-
|
301 |
-
key = attn.to_k(encoder_hidden_states)
|
302 |
-
value = attn.to_v(encoder_hidden_states)
|
303 |
-
|
304 |
-
query = attn.head_to_batch_dim(query)
|
305 |
-
key = attn.head_to_batch_dim(key)
|
306 |
-
value = attn.head_to_batch_dim(value)
|
307 |
-
|
308 |
-
if xformers_available:
|
309 |
-
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
310 |
-
else:
|
311 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
312 |
-
hidden_states = torch.bmm(attention_probs, value)
|
313 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
314 |
-
|
315 |
-
# for ip-adapter
|
316 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
317 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
318 |
-
|
319 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
320 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
321 |
-
|
322 |
-
if xformers_available:
|
323 |
-
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
324 |
-
else:
|
325 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
326 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
327 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
328 |
-
|
329 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
330 |
-
|
331 |
-
# linear proj
|
332 |
-
hidden_states = attn.to_out[0](hidden_states)
|
333 |
-
# dropout
|
334 |
-
hidden_states = attn.to_out[1](hidden_states)
|
335 |
-
|
336 |
-
if input_ndim == 4:
|
337 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
338 |
-
|
339 |
-
if attn.residual_connection:
|
340 |
-
hidden_states = hidden_states + residual
|
341 |
-
|
342 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
343 |
-
|
344 |
-
return hidden_states
|
345 |
-
|
346 |
-
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
347 |
-
# TODO attention_mask
|
348 |
-
query = query.contiguous()
|
349 |
-
key = key.contiguous()
|
350 |
-
value = value.contiguous()
|
351 |
-
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
352 |
-
return hidden_states
|
353 |
-
|
354 |
-
|
355 |
-
EXAMPLE_DOC_STRING = """
|
356 |
-
Examples:
|
357 |
-
```py
|
358 |
-
>>> # !pip install opencv-python transformers accelerate insightface
|
359 |
-
>>> import diffusers
|
360 |
-
>>> from diffusers.utils import load_image
|
361 |
-
>>> from diffusers.models import ControlNetModel
|
362 |
-
|
363 |
-
>>> import cv2
|
364 |
-
>>> import torch
|
365 |
-
>>> import numpy as np
|
366 |
-
>>> from PIL import Image
|
367 |
-
|
368 |
-
>>> from insightface.app import FaceAnalysis
|
369 |
-
>>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
|
370 |
-
|
371 |
-
>>> # download 'antelopev2' under ./models
|
372 |
-
>>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
373 |
-
>>> app.prepare(ctx_id=0, det_size=(640, 640))
|
374 |
-
|
375 |
-
>>> # download models under ./checkpoints
|
376 |
-
>>> face_adapter = f'./checkpoints/ip-adapter.bin'
|
377 |
-
>>> controlnet_path = f'./checkpoints/ControlNetModel'
|
378 |
|
379 |
-
|
380 |
-
>>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
381 |
-
|
382 |
-
>>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
|
383 |
-
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
|
384 |
-
... )
|
385 |
-
>>> pipe.cuda()
|
386 |
-
|
387 |
-
>>> # load adapter
|
388 |
-
>>> pipe.load_ip_adapter_instantid(face_adapter)
|
389 |
-
|
390 |
-
>>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
|
391 |
-
>>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
|
392 |
-
|
393 |
-
>>> # load an image
|
394 |
-
>>> image = load_image("your-example.jpg")
|
395 |
-
|
396 |
-
>>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
|
397 |
-
>>> face_emb = face_info['embedding']
|
398 |
-
>>> face_kps = draw_kps(face_image, face_info['kps'])
|
399 |
-
|
400 |
-
>>> pipe.set_ip_adapter_scale(0.8)
|
401 |
-
|
402 |
-
>>> # generate image
|
403 |
-
>>> image = pipe(
|
404 |
-
... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
|
405 |
-
... ).images[0]
|
406 |
-
```
|
407 |
-
"""
|
408 |
-
|
409 |
-
|
410 |
-
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
|
411 |
-
stickwidth = 4
|
412 |
-
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
|
413 |
-
kps = np.array(kps)
|
414 |
-
|
415 |
-
w, h = image_pil.size
|
416 |
-
out_img = np.zeros([h, w, 3])
|
417 |
-
|
418 |
-
for i in range(len(limbSeq)):
|
419 |
-
index = limbSeq[i]
|
420 |
-
color = color_list[index[0]]
|
421 |
-
|
422 |
-
x = kps[index][:, 0]
|
423 |
-
y = kps[index][:, 1]
|
424 |
-
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
|
425 |
-
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
|
426 |
-
polygon = cv2.ellipse2Poly(
|
427 |
-
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
|
428 |
-
)
|
429 |
-
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
|
430 |
-
out_img = (out_img * 0.6).astype(np.uint8)
|
431 |
-
|
432 |
-
for idx_kp, kp in enumerate(kps):
|
433 |
-
color = color_list[idx_kp]
|
434 |
-
x, y = kp
|
435 |
-
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
|
436 |
-
|
437 |
-
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
|
438 |
-
return out_img_pil
|
439 |
|
440 |
|
441 |
class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
|
442 |
-
def cuda(self, dtype=torch.float16, use_xformers=False):
|
443 |
self.to("cuda", dtype)
|
444 |
-
|
445 |
if hasattr(self, "image_proj_model"):
|
446 |
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
|
447 |
|
448 |
if use_xformers:
|
449 |
if is_xformers_available():
|
450 |
-
import xformers
|
451 |
-
from packaging import version
|
452 |
-
|
453 |
-
xformers_version = version.parse(xformers.__version__)
|
454 |
-
if xformers_version == version.parse("0.0.16"):
|
455 |
-
logger.warning(
|
456 |
-
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
457 |
-
)
|
458 |
self.enable_xformers_memory_efficient_attention()
|
459 |
else:
|
460 |
-
raise ValueError("
|
461 |
|
462 |
-
def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
|
463 |
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
|
464 |
self.set_ip_adapter(model_ckpt, num_tokens, scale)
|
465 |
|
466 |
-
def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
|
467 |
-
image_proj_model = Resampler(
|
468 |
-
dim=1280,
|
469 |
-
|
470 |
-
dim_head=64,
|
471 |
-
heads=20,
|
472 |
-
num_queries=num_tokens,
|
473 |
-
embedding_dim=image_emb_dim,
|
474 |
-
output_dim=self.unet.config.cross_attention_dim,
|
475 |
-
ff_mult=4,
|
476 |
-
)
|
477 |
-
|
478 |
-
image_proj_model.eval()
|
479 |
|
480 |
-
|
481 |
-
state_dict = torch.load(model_ckpt, map_location="cpu")
|
482 |
-
if "image_proj" in state_dict:
|
483 |
-
state_dict = state_dict["image_proj"]
|
484 |
self.image_proj_model.load_state_dict(state_dict)
|
485 |
-
|
486 |
self.image_proj_model_in_features = image_emb_dim
|
487 |
|
488 |
-
def set_ip_adapter(self, model_ckpt, num_tokens, scale):
|
489 |
-
unet = self.unet
|
490 |
attn_procs = {}
|
491 |
-
for name in unet.attn_processors.
|
492 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
block_id = int(name[len("up_blocks.")])
|
497 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
498 |
-
elif name.startswith("down_blocks"):
|
499 |
-
block_id = int(name[len("down_blocks.")])
|
500 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
501 |
-
if cross_attention_dim is None:
|
502 |
-
attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
|
503 |
-
else:
|
504 |
-
attn_procs[name] = IPAttnProcessor(
|
505 |
-
hidden_size=hidden_size,
|
506 |
-
cross_attention_dim=cross_attention_dim,
|
507 |
-
scale=scale,
|
508 |
-
num_tokens=num_tokens,
|
509 |
-
).to(unet.device, dtype=unet.dtype)
|
510 |
-
unet.set_attn_processor(attn_procs)
|
511 |
|
512 |
-
|
513 |
-
|
514 |
-
if "ip_adapter" in state_dict:
|
515 |
-
state_dict = state_dict["ip_adapter"]
|
516 |
-
ip_layers.load_state_dict(state_dict)
|
517 |
-
|
518 |
-
def set_ip_adapter_scale(self, scale):
|
519 |
-
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
520 |
-
for attn_processor in unet.attn_processors.values():
|
521 |
-
if isinstance(attn_processor, IPAttnProcessor):
|
522 |
-
attn_processor.scale = scale
|
523 |
|
524 |
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
|
525 |
-
if isinstance(prompt_image_emb, torch.Tensor)
|
526 |
-
|
527 |
-
else:
|
528 |
-
prompt_image_emb = torch.tensor(prompt_image_emb)
|
529 |
-
|
530 |
-
prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
|
531 |
-
prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
|
532 |
|
533 |
if do_classifier_free_guidance:
|
534 |
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
535 |
-
else:
|
536 |
-
prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
|
537 |
-
image_proj_model_device = self.image_proj_model.to(device)
|
538 |
-
prompt_image_emb = image_proj_model_device(prompt_image_emb)
|
539 |
-
return prompt_image_emb
|
540 |
-
|
541 |
-
@torch.no_grad()
|
542 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
543 |
-
def __call__(
|
544 |
-
self,
|
545 |
-
prompt: Union[str, List[str]] = None,
|
546 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
547 |
-
image: PipelineImageInput = None,
|
548 |
-
control_image: PipelineImageInput = None,
|
549 |
-
strength: float = 0.8,
|
550 |
-
height: Optional[int] = None,
|
551 |
-
width: Optional[int] = None,
|
552 |
-
num_inference_steps: int = 50,
|
553 |
-
guidance_scale: float = 5.0,
|
554 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
555 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
556 |
-
num_images_per_prompt: Optional[int] = 1,
|
557 |
-
eta: float = 0.0,
|
558 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
559 |
-
latents: Optional[torch.FloatTensor] = None,
|
560 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
561 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
562 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
563 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
564 |
-
image_embeds: Optional[torch.FloatTensor] = None,
|
565 |
-
output_type: Optional[str] = "pil",
|
566 |
-
return_dict: bool = True,
|
567 |
-
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
568 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
569 |
-
guess_mode: bool = False,
|
570 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
571 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
572 |
-
original_size: Tuple[int, int] = None,
|
573 |
-
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
574 |
-
target_size: Tuple[int, int] = None,
|
575 |
-
negative_original_size: Optional[Tuple[int, int]] = None,
|
576 |
-
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
577 |
-
negative_target_size: Optional[Tuple[int, int]] = None,
|
578 |
-
aesthetic_score: float = 6.0,
|
579 |
-
negative_aesthetic_score: float = 2.5,
|
580 |
-
clip_skip: Optional[int] = None,
|
581 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
582 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
583 |
-
**kwargs,
|
584 |
-
):
|
585 |
-
r"""
|
586 |
-
The call function to the pipeline for generation.
|
587 |
-
|
588 |
-
Args:
|
589 |
-
prompt (`str` or `List[str]`, *optional*):
|
590 |
-
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
591 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
592 |
-
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
593 |
-
used in both text-encoders.
|
594 |
-
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
595 |
-
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
596 |
-
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
597 |
-
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
598 |
-
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
599 |
-
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
600 |
-
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
601 |
-
input to a single ControlNet.
|
602 |
-
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
603 |
-
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
604 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
605 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
606 |
-
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
607 |
-
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
608 |
-
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
609 |
-
and checkpoints that are not specifically fine-tuned on low resolutions.
|
610 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
611 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
612 |
-
expense of slower inference.
|
613 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
614 |
-
A higher guidance scale value encourages the model to generate images closely linked to the text
|
615 |
-
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
616 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
617 |
-
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
618 |
-
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
619 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
620 |
-
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
621 |
-
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
622 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
623 |
-
The number of images to generate per prompt.
|
624 |
-
eta (`float`, *optional*, defaults to 0.0):
|
625 |
-
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
626 |
-
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
627 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
628 |
-
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
629 |
-
generation deterministic.
|
630 |
-
latents (`torch.FloatTensor`, *optional*):
|
631 |
-
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
632 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
633 |
-
tensor is generated by sampling using the supplied random `generator`.
|
634 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
635 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
636 |
-
provided, text embeddings are generated from the `prompt` input argument.
|
637 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
638 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
639 |
-
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
640 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
641 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
642 |
-
not provided, pooled text embeddings are generated from `prompt` input argument.
|
643 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
644 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
645 |
-
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
646 |
-
argument.
|
647 |
-
image_embeds (`torch.FloatTensor`, *optional*):
|
648 |
-
Pre-generated image embeddings.
|
649 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
650 |
-
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
651 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
652 |
-
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
653 |
-
plain tuple.
|
654 |
-
cross_attention_kwargs (`dict`, *optional*):
|
655 |
-
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
656 |
-
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
657 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
658 |
-
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
659 |
-
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
660 |
-
the corresponding scale as a list.
|
661 |
-
guess_mode (`bool`, *optional*, defaults to `False`):
|
662 |
-
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
663 |
-
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
664 |
-
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
665 |
-
The percentage of total steps at which the ControlNet starts applying.
|
666 |
-
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
667 |
-
The percentage of total steps at which the ControlNet stops applying.
|
668 |
-
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
669 |
-
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
670 |
-
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
671 |
-
explained in section 2.2 of
|
672 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
673 |
-
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
674 |
-
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
675 |
-
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
676 |
-
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
677 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
678 |
-
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
679 |
-
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
680 |
-
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
681 |
-
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
682 |
-
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
683 |
-
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
684 |
-
micro-conditioning as explained in section 2.2 of
|
685 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
686 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
687 |
-
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
688 |
-
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
689 |
-
micro-conditioning as explained in section 2.2 of
|
690 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
691 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
692 |
-
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
693 |
-
To negatively condition the generation process based on a target image resolution. It should be as same
|
694 |
-
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
695 |
-
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
696 |
-
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
697 |
-
clip_skip (`int`, *optional*):
|
698 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
699 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
700 |
-
callback_on_step_end (`Callable`, *optional*):
|
701 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
702 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
703 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
704 |
-
`callback_on_step_end_tensor_inputs`.
|
705 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
706 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
707 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
708 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
709 |
-
|
710 |
-
Examples:
|
711 |
-
|
712 |
-
Returns:
|
713 |
-
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
714 |
-
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
715 |
-
otherwise a `tuple` is returned containing the output images.
|
716 |
-
"""
|
717 |
-
|
718 |
-
callback = kwargs.pop("callback", None)
|
719 |
-
callback_steps = kwargs.pop("callback_steps", None)
|
720 |
-
|
721 |
-
if callback is not None:
|
722 |
-
deprecate(
|
723 |
-
"callback",
|
724 |
-
"1.0.0",
|
725 |
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
726 |
-
)
|
727 |
-
if callback_steps is not None:
|
728 |
-
deprecate(
|
729 |
-
"callback_steps",
|
730 |
-
"1.0.0",
|
731 |
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
732 |
-
)
|
733 |
-
|
734 |
-
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
735 |
-
|
736 |
-
# align format for control guidance
|
737 |
-
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
738 |
-
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
739 |
-
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
740 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
741 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
742 |
-
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
743 |
-
control_guidance_start, control_guidance_end = (
|
744 |
-
mult * [control_guidance_start],
|
745 |
-
mult * [control_guidance_end],
|
746 |
-
)
|
747 |
-
|
748 |
-
# 1. Check inputs. Raise error if not correct
|
749 |
-
self.check_inputs(
|
750 |
-
prompt,
|
751 |
-
prompt_2,
|
752 |
-
control_image,
|
753 |
-
strength,
|
754 |
-
num_inference_steps,
|
755 |
-
callback_steps,
|
756 |
-
negative_prompt,
|
757 |
-
negative_prompt_2,
|
758 |
-
prompt_embeds,
|
759 |
-
negative_prompt_embeds,
|
760 |
-
pooled_prompt_embeds,
|
761 |
-
negative_pooled_prompt_embeds,
|
762 |
-
None,
|
763 |
-
None,
|
764 |
-
controlnet_conditioning_scale,
|
765 |
-
control_guidance_start,
|
766 |
-
control_guidance_end,
|
767 |
-
callback_on_step_end_tensor_inputs,
|
768 |
-
)
|
769 |
-
|
770 |
-
self._guidance_scale = guidance_scale
|
771 |
-
self._clip_skip = clip_skip
|
772 |
-
self._cross_attention_kwargs = cross_attention_kwargs
|
773 |
-
|
774 |
-
# 2. Define call parameters
|
775 |
-
if prompt is not None and isinstance(prompt, str):
|
776 |
-
batch_size = 1
|
777 |
-
elif prompt is not None and isinstance(prompt, list):
|
778 |
-
batch_size = len(prompt)
|
779 |
-
else:
|
780 |
-
batch_size = prompt_embeds.shape[0]
|
781 |
-
|
782 |
-
device = self._execution_device
|
783 |
-
|
784 |
-
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
785 |
-
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
786 |
-
|
787 |
-
global_pool_conditions = (
|
788 |
-
controlnet.config.global_pool_conditions
|
789 |
-
if isinstance(controlnet, ControlNetModel)
|
790 |
-
else controlnet.nets[0].config.global_pool_conditions
|
791 |
-
)
|
792 |
-
guess_mode = guess_mode or global_pool_conditions
|
793 |
-
|
794 |
-
# 3.1 Encode input prompt
|
795 |
-
text_encoder_lora_scale = (
|
796 |
-
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
797 |
-
)
|
798 |
-
(
|
799 |
-
prompt_embeds,
|
800 |
-
negative_prompt_embeds,
|
801 |
-
pooled_prompt_embeds,
|
802 |
-
negative_pooled_prompt_embeds,
|
803 |
-
) = self.encode_prompt(
|
804 |
-
prompt,
|
805 |
-
prompt_2,
|
806 |
-
device,
|
807 |
-
num_images_per_prompt,
|
808 |
-
self.do_classifier_free_guidance,
|
809 |
-
negative_prompt,
|
810 |
-
negative_prompt_2,
|
811 |
-
prompt_embeds=prompt_embeds,
|
812 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
813 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
814 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
815 |
-
lora_scale=text_encoder_lora_scale,
|
816 |
-
clip_skip=self.clip_skip,
|
817 |
-
)
|
818 |
-
|
819 |
-
# 3.2 Encode image prompt
|
820 |
-
prompt_image_emb = self._encode_prompt_image_emb(
|
821 |
-
image_embeds, device, self.unet.dtype, self.do_classifier_free_guidance
|
822 |
-
)
|
823 |
-
bs_embed, seq_len, _ = prompt_image_emb.shape
|
824 |
-
prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
|
825 |
-
prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
826 |
-
|
827 |
-
# 4. Prepare image and controlnet_conditioning_image
|
828 |
-
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
829 |
-
|
830 |
-
if isinstance(controlnet, ControlNetModel):
|
831 |
-
control_image = self.prepare_control_image(
|
832 |
-
image=control_image,
|
833 |
-
width=width,
|
834 |
-
height=height,
|
835 |
-
batch_size=batch_size * num_images_per_prompt,
|
836 |
-
num_images_per_prompt=num_images_per_prompt,
|
837 |
-
device=device,
|
838 |
-
dtype=controlnet.dtype,
|
839 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
840 |
-
guess_mode=guess_mode,
|
841 |
-
)
|
842 |
-
height, width = control_image.shape[-2:]
|
843 |
-
elif isinstance(controlnet, MultiControlNetModel):
|
844 |
-
control_images = []
|
845 |
-
|
846 |
-
for control_image_ in control_image:
|
847 |
-
control_image_ = self.prepare_control_image(
|
848 |
-
image=control_image_,
|
849 |
-
width=width,
|
850 |
-
height=height,
|
851 |
-
batch_size=batch_size * num_images_per_prompt,
|
852 |
-
num_images_per_prompt=num_images_per_prompt,
|
853 |
-
device=device,
|
854 |
-
dtype=controlnet.dtype,
|
855 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
856 |
-
guess_mode=guess_mode,
|
857 |
-
)
|
858 |
-
|
859 |
-
control_images.append(control_image_)
|
860 |
-
|
861 |
-
control_image = control_images
|
862 |
-
height, width = control_image[0].shape[-2:]
|
863 |
-
else:
|
864 |
-
assert False
|
865 |
-
|
866 |
-
# 5. Prepare timesteps
|
867 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
868 |
-
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
869 |
-
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
870 |
-
self._num_timesteps = len(timesteps)
|
871 |
-
|
872 |
-
# 6. Prepare latent variables
|
873 |
-
latents = self.prepare_latents(
|
874 |
-
image,
|
875 |
-
latent_timestep,
|
876 |
-
batch_size,
|
877 |
-
num_images_per_prompt,
|
878 |
-
prompt_embeds.dtype,
|
879 |
-
device,
|
880 |
-
generator,
|
881 |
-
True,
|
882 |
-
)
|
883 |
-
|
884 |
-
# # 6.5 Optionally get Guidance Scale Embedding
|
885 |
-
timestep_cond = None
|
886 |
-
if self.unet.config.time_cond_proj_dim is not None:
|
887 |
-
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
888 |
-
timestep_cond = self.get_guidance_scale_embedding(
|
889 |
-
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
890 |
-
).to(device=device, dtype=latents.dtype)
|
891 |
-
|
892 |
-
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
893 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
894 |
-
|
895 |
-
# 7.1 Create tensor stating which controlnets to keep
|
896 |
-
controlnet_keep = []
|
897 |
-
for i in range(len(timesteps)):
|
898 |
-
keeps = [
|
899 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
900 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
901 |
-
]
|
902 |
-
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
903 |
-
|
904 |
-
# 7.2 Prepare added time ids & embeddings
|
905 |
-
if isinstance(control_image, list):
|
906 |
-
original_size = original_size or control_image[0].shape[-2:]
|
907 |
-
else:
|
908 |
-
original_size = original_size or control_image.shape[-2:]
|
909 |
-
target_size = target_size or (height, width)
|
910 |
-
|
911 |
-
if negative_original_size is None:
|
912 |
-
negative_original_size = original_size
|
913 |
-
if negative_target_size is None:
|
914 |
-
negative_target_size = target_size
|
915 |
-
add_text_embeds = pooled_prompt_embeds
|
916 |
-
|
917 |
-
if self.text_encoder_2 is None:
|
918 |
-
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
919 |
-
else:
|
920 |
-
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
921 |
-
|
922 |
-
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
923 |
-
original_size,
|
924 |
-
crops_coords_top_left,
|
925 |
-
target_size,
|
926 |
-
aesthetic_score,
|
927 |
-
negative_aesthetic_score,
|
928 |
-
negative_original_size,
|
929 |
-
negative_crops_coords_top_left,
|
930 |
-
negative_target_size,
|
931 |
-
dtype=prompt_embeds.dtype,
|
932 |
-
text_encoder_projection_dim=text_encoder_projection_dim,
|
933 |
-
)
|
934 |
-
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
935 |
-
|
936 |
-
if self.do_classifier_free_guidance:
|
937 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
938 |
-
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
939 |
-
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
940 |
-
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
941 |
-
|
942 |
-
prompt_embeds = prompt_embeds.to(device)
|
943 |
-
add_text_embeds = add_text_embeds.to(device)
|
944 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
945 |
-
encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
|
946 |
-
|
947 |
-
# 8. Denoising loop
|
948 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
949 |
-
is_unet_compiled = is_compiled_module(self.unet)
|
950 |
-
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
951 |
-
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
952 |
-
|
953 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
954 |
-
for i, t in enumerate(timesteps):
|
955 |
-
# Relevant thread:
|
956 |
-
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
957 |
-
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
958 |
-
torch._inductor.cudagraph_mark_step_begin()
|
959 |
-
# expand the latents if we are doing classifier free guidance
|
960 |
-
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
961 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
962 |
-
|
963 |
-
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
964 |
-
|
965 |
-
# controlnet(s) inference
|
966 |
-
if guess_mode and self.do_classifier_free_guidance:
|
967 |
-
# Infer ControlNet only for the conditional batch.
|
968 |
-
control_model_input = latents
|
969 |
-
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
970 |
-
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
971 |
-
controlnet_added_cond_kwargs = {
|
972 |
-
"text_embeds": add_text_embeds.chunk(2)[1],
|
973 |
-
"time_ids": add_time_ids.chunk(2)[1],
|
974 |
-
}
|
975 |
-
else:
|
976 |
-
control_model_input = latent_model_input
|
977 |
-
controlnet_prompt_embeds = prompt_embeds
|
978 |
-
controlnet_added_cond_kwargs = added_cond_kwargs
|
979 |
-
|
980 |
-
if isinstance(controlnet_keep[i], list):
|
981 |
-
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
982 |
-
else:
|
983 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
984 |
-
if isinstance(controlnet_cond_scale, list):
|
985 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
986 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
987 |
-
|
988 |
-
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
989 |
-
control_model_input,
|
990 |
-
t,
|
991 |
-
encoder_hidden_states=prompt_image_emb,
|
992 |
-
controlnet_cond=control_image,
|
993 |
-
conditioning_scale=cond_scale,
|
994 |
-
guess_mode=guess_mode,
|
995 |
-
added_cond_kwargs=controlnet_added_cond_kwargs,
|
996 |
-
return_dict=False,
|
997 |
-
)
|
998 |
-
|
999 |
-
if guess_mode and self.do_classifier_free_guidance:
|
1000 |
-
# Infered ControlNet only for the conditional batch.
|
1001 |
-
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1002 |
-
# add 0 to the unconditional batch to keep it unchanged.
|
1003 |
-
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1004 |
-
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1005 |
-
|
1006 |
-
# predict the noise residual
|
1007 |
-
noise_pred = self.unet(
|
1008 |
-
latent_model_input,
|
1009 |
-
t,
|
1010 |
-
encoder_hidden_states=encoder_hidden_states,
|
1011 |
-
timestep_cond=timestep_cond,
|
1012 |
-
cross_attention_kwargs=self.cross_attention_kwargs,
|
1013 |
-
down_block_additional_residuals=down_block_res_samples,
|
1014 |
-
mid_block_additional_residual=mid_block_res_sample,
|
1015 |
-
added_cond_kwargs=added_cond_kwargs,
|
1016 |
-
return_dict=False,
|
1017 |
-
)[0]
|
1018 |
-
|
1019 |
-
# perform guidance
|
1020 |
-
if self.do_classifier_free_guidance:
|
1021 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1022 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1023 |
-
|
1024 |
-
# compute the previous noisy sample x_t -> x_t-1
|
1025 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1026 |
-
|
1027 |
-
if callback_on_step_end is not None:
|
1028 |
-
callback_kwargs = {}
|
1029 |
-
for k in callback_on_step_end_tensor_inputs:
|
1030 |
-
callback_kwargs[k] = locals()[k]
|
1031 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1032 |
-
|
1033 |
-
latents = callback_outputs.pop("latents", latents)
|
1034 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1035 |
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1036 |
-
|
1037 |
-
# call the callback, if provided
|
1038 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1039 |
-
progress_bar.update()
|
1040 |
-
if callback is not None and i % callback_steps == 0:
|
1041 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
1042 |
-
callback(step_idx, t, latents)
|
1043 |
-
|
1044 |
-
if not output_type == "latent":
|
1045 |
-
# make sure the VAE is in float32 mode, as it overflows in float16
|
1046 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1047 |
-
if needs_upcasting:
|
1048 |
-
self.upcast_vae()
|
1049 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1050 |
-
|
1051 |
-
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1052 |
-
|
1053 |
-
# cast back to fp16 if needed
|
1054 |
-
if needs_upcasting:
|
1055 |
-
self.vae.to(dtype=torch.float16)
|
1056 |
-
else:
|
1057 |
-
image = latents
|
1058 |
-
|
1059 |
-
if not output_type == "latent":
|
1060 |
-
# apply watermark if available
|
1061 |
-
if self.watermark is not None:
|
1062 |
-
image = self.watermark.apply_watermark(image)
|
1063 |
-
|
1064 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
1065 |
-
|
1066 |
-
# Offload all models
|
1067 |
-
self.maybe_free_model_hooks()
|
1068 |
-
|
1069 |
-
if not return_dict:
|
1070 |
-
return (image,)
|
1071 |
|
1072 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3 |
|
|
|
6 |
import PIL.Image
|
7 |
import torch
|
8 |
import torch.nn as nn
|
|
|
9 |
from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
|
10 |
from diffusers.image_processor import PipelineImageInput
|
11 |
from diffusers.models import ControlNetModel
|
12 |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
13 |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
14 |
+
from diffusers.utils import deprecate, logging, replace_example_docstring
|
|
|
|
|
|
|
|
|
15 |
from diffusers.utils.import_utils import is_xformers_available
|
16 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
17 |
|
18 |
+
logger = logging.get_logger(__name__) # Initialize logger
|
19 |
|
20 |
+
# Check for xformers availability
|
21 |
try:
|
22 |
import xformers
|
23 |
import xformers.ops
|
24 |
|
25 |
xformers_available = True
|
26 |
+
except ImportError:
|
27 |
xformers_available = False
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
def reshape_tensor(x: torch.Tensor, heads: int) -> torch.Tensor:
|
31 |
+
"""Reshapes tensor for multi-head attention processing."""
|
32 |
bs, length, width = x.shape
|
33 |
+
return x.view(bs, length, heads, -1).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
class PerceiverAttention(nn.Module):
|
37 |
+
def __init__(self, dim: int, dim_head: int = 64, heads: int = 8):
|
38 |
super().__init__()
|
39 |
self.scale = dim_head**-0.5
|
40 |
self.dim_head = dim_head
|
|
|
43 |
|
44 |
self.norm1 = nn.LayerNorm(dim)
|
45 |
self.norm2 = nn.LayerNorm(dim)
|
|
|
46 |
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
47 |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
48 |
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
49 |
|
50 |
+
def forward(self, x: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
51 |
+
x, latents = self.norm1(x), self.norm2(latents)
|
52 |
+
q, kv = self.to_q(latents), self.to_kv(torch.cat((x, latents), dim=1))
|
53 |
+
k, v = kv.chunk(2, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
q, k, v = map(lambda t: reshape_tensor(t, self.heads), (q, k, v))
|
|
|
|
|
56 |
|
57 |
+
# Scaled dot-product attention
|
|
|
|
|
|
|
|
|
58 |
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
59 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1)
|
60 |
+
weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype)
|
61 |
out = weight @ v
|
62 |
|
63 |
+
return self.to_out(out.permute(0, 2, 1, 3).reshape(latents.shape[0], latents.shape[1], -1))
|
|
|
|
|
64 |
|
65 |
|
66 |
class Resampler(nn.Module):
|
67 |
def __init__(
|
68 |
self,
|
69 |
+
dim: int = 1024,
|
70 |
+
depth: int = 8,
|
71 |
+
dim_head: int = 64,
|
72 |
+
heads: int = 16,
|
73 |
+
num_queries: int = 8,
|
74 |
+
embedding_dim: int = 768,
|
75 |
+
output_dim: int = 1024,
|
76 |
+
ff_mult: int = 4,
|
77 |
):
|
78 |
super().__init__()
|
79 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / math.sqrt(dim))
|
|
|
|
|
80 |
self.proj_in = nn.Linear(embedding_dim, dim)
|
|
|
81 |
self.proj_out = nn.Linear(dim, output_dim)
|
82 |
self.norm_out = nn.LayerNorm(output_dim)
|
83 |
+
self.layers = nn.ModuleList([nn.ModuleList([PerceiverAttention(dim, dim_head, heads), nn.LayerNorm(dim)]) for _ in range(depth)])
|
84 |
|
85 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
86 |
+
latents = self.latents.expand(x.size(0), -1, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
x = self.proj_in(x)
|
88 |
|
89 |
+
for attn, norm in self.layers:
|
90 |
+
latents = norm(attn(x, latents) + latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
return self.norm_out(self.proj_out(latents))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
|
96 |
+
def cuda(self, dtype: torch.dtype = torch.float16, use_xformers: bool = False):
|
97 |
self.to("cuda", dtype)
|
|
|
98 |
if hasattr(self, "image_proj_model"):
|
99 |
self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
|
100 |
|
101 |
if use_xformers:
|
102 |
if is_xformers_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
self.enable_xformers_memory_efficient_attention()
|
104 |
else:
|
105 |
+
raise ValueError("xFormers is not available. Ensure it is installed correctly.")
|
106 |
|
107 |
+
def load_ip_adapter_instantid(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16, scale: float = 0.5):
|
108 |
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
|
109 |
self.set_ip_adapter(model_ckpt, num_tokens, scale)
|
110 |
|
111 |
+
def set_image_proj_model(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16):
|
112 |
+
self.image_proj_model = Resampler(
|
113 |
+
dim=1280, depth=4, dim_head=64, heads=20, num_queries=num_tokens, embedding_dim=image_emb_dim, output_dim=self.unet.config.cross_attention_dim
|
114 |
+
).to(self.device, dtype=self.dtype).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
state_dict = torch.load(model_ckpt, map_location="cpu").get("image_proj", torch.load(model_ckpt, map_location="cpu"))
|
|
|
|
|
|
|
117 |
self.image_proj_model.load_state_dict(state_dict)
|
|
|
118 |
self.image_proj_model_in_features = image_emb_dim
|
119 |
|
120 |
+
def set_ip_adapter(self, model_ckpt: str, num_tokens: int, scale: float):
|
|
|
121 |
attn_procs = {}
|
122 |
+
for name, module in self.unet.attn_processors.items():
|
123 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
|
124 |
+
hidden_size = self.unet.config.block_out_channels[{"mid_block": -1, "up_blocks": int(name[9]), "down_blocks": int(name[12])}[name.split(".")[0]]]
|
125 |
+
attn_procs[name] = (IPAttnProcessor(hidden_size, cross_attention_dim, scale, num_tokens)
|
126 |
+
if cross_attention_dim else nn.Identity()).to(self.unet.device, dtype=self.unet.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
self.unet.set_attn_processor(attn_procs)
|
129 |
+
self.unet.attn_processors.load_state_dict(torch.load(model_ckpt, map_location="cpu").get("ip_adapter", torch.load(model_ckpt, map_location="cpu")))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
|
132 |
+
prompt_image_emb = torch.tensor(prompt_image_emb) if not isinstance(prompt_image_emb, torch.Tensor) else prompt_image_emb.clone().detach()
|
133 |
+
prompt_image_emb = prompt_image_emb.to(device, dtype=dtype).reshape([1, -1, self.image_proj_model_in_features])
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
if do_classifier_free_guidance:
|
136 |
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
return self.image_proj_model.to(device)(prompt_image_emb)
|