primerz commited on
Commit
7fa4705
·
verified ·
1 Parent(s): 125014f

Update pipeline_stable_diffusion_xl_instantid_img2img.py

Browse files
pipeline_stable_diffusion_xl_instantid_img2img.py CHANGED
@@ -1,18 +1,3 @@
1
- # Copyright 2024 The InstantX Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
-
16
  import math
17
  from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
 
@@ -21,55 +6,35 @@ import numpy as np
21
  import PIL.Image
22
  import torch
23
  import torch.nn as nn
24
-
25
  from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
26
  from diffusers.image_processor import PipelineImageInput
27
  from diffusers.models import ControlNetModel
28
  from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
29
  from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
30
- from diffusers.utils import (
31
- deprecate,
32
- logging,
33
- replace_example_docstring,
34
- )
35
  from diffusers.utils.import_utils import is_xformers_available
36
  from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
37
 
 
38
 
 
39
  try:
40
  import xformers
41
  import xformers.ops
42
 
43
  xformers_available = True
44
- except Exception:
45
  xformers_available = False
46
 
47
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
-
49
-
50
- def FeedForward(dim, mult=4):
51
- inner_dim = int(dim * mult)
52
- return nn.Sequential(
53
- nn.LayerNorm(dim),
54
- nn.Linear(dim, inner_dim, bias=False),
55
- nn.GELU(),
56
- nn.Linear(inner_dim, dim, bias=False),
57
- )
58
 
59
-
60
- def reshape_tensor(x, heads):
61
  bs, length, width = x.shape
62
- # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
63
- x = x.view(bs, length, heads, -1)
64
- # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
65
- x = x.transpose(1, 2)
66
- # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
67
- x = x.reshape(bs, heads, length, -1)
68
- return x
69
 
70
 
71
  class PerceiverAttention(nn.Module):
72
- def __init__(self, *, dim, dim_head=64, heads=8):
73
  super().__init__()
74
  self.scale = dim_head**-0.5
75
  self.dim_head = dim_head
@@ -78,995 +43,96 @@ class PerceiverAttention(nn.Module):
78
 
79
  self.norm1 = nn.LayerNorm(dim)
80
  self.norm2 = nn.LayerNorm(dim)
81
-
82
  self.to_q = nn.Linear(dim, inner_dim, bias=False)
83
  self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
84
  self.to_out = nn.Linear(inner_dim, dim, bias=False)
85
 
86
- def forward(self, x, latents):
87
- """
88
- Args:
89
- x (torch.Tensor): image features
90
- shape (b, n1, D)
91
- latent (torch.Tensor): latent features
92
- shape (b, n2, D)
93
- """
94
- x = self.norm1(x)
95
- latents = self.norm2(latents)
96
-
97
- b, l, _ = latents.shape
98
 
99
- q = self.to_q(latents)
100
- kv_input = torch.cat((x, latents), dim=-2)
101
- k, v = self.to_kv(kv_input).chunk(2, dim=-1)
102
 
103
- q = reshape_tensor(q, self.heads)
104
- k = reshape_tensor(k, self.heads)
105
- v = reshape_tensor(v, self.heads)
106
-
107
- # attention
108
  scale = 1 / math.sqrt(math.sqrt(self.dim_head))
109
- weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
110
- weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
111
  out = weight @ v
112
 
113
- out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
114
-
115
- return self.to_out(out)
116
 
117
 
118
  class Resampler(nn.Module):
119
  def __init__(
120
  self,
121
- dim=1024,
122
- depth=8,
123
- dim_head=64,
124
- heads=16,
125
- num_queries=8,
126
- embedding_dim=768,
127
- output_dim=1024,
128
- ff_mult=4,
129
  ):
130
  super().__init__()
131
-
132
- self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
133
-
134
  self.proj_in = nn.Linear(embedding_dim, dim)
135
-
136
  self.proj_out = nn.Linear(dim, output_dim)
137
  self.norm_out = nn.LayerNorm(output_dim)
 
138
 
139
- self.layers = nn.ModuleList([])
140
- for _ in range(depth):
141
- self.layers.append(
142
- nn.ModuleList(
143
- [
144
- PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
145
- FeedForward(dim=dim, mult=ff_mult),
146
- ]
147
- )
148
- )
149
-
150
- def forward(self, x):
151
- latents = self.latents.repeat(x.size(0), 1, 1)
152
  x = self.proj_in(x)
153
 
154
- for attn, ff in self.layers:
155
- latents = attn(x, latents) + latents
156
- latents = ff(latents) + latents
157
-
158
- latents = self.proj_out(latents)
159
- return self.norm_out(latents)
160
-
161
-
162
- class AttnProcessor(nn.Module):
163
- r"""
164
- Default processor for performing attention-related computations.
165
- """
166
-
167
- def __init__(
168
- self,
169
- hidden_size=None,
170
- cross_attention_dim=None,
171
- ):
172
- super().__init__()
173
-
174
- def __call__(
175
- self,
176
- attn,
177
- hidden_states,
178
- encoder_hidden_states=None,
179
- attention_mask=None,
180
- temb=None,
181
- ):
182
- residual = hidden_states
183
-
184
- if attn.spatial_norm is not None:
185
- hidden_states = attn.spatial_norm(hidden_states, temb)
186
-
187
- input_ndim = hidden_states.ndim
188
-
189
- if input_ndim == 4:
190
- batch_size, channel, height, width = hidden_states.shape
191
- hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
192
-
193
- batch_size, sequence_length, _ = (
194
- hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
195
- )
196
- attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
197
-
198
- if attn.group_norm is not None:
199
- hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
200
-
201
- query = attn.to_q(hidden_states)
202
-
203
- if encoder_hidden_states is None:
204
- encoder_hidden_states = hidden_states
205
- elif attn.norm_cross:
206
- encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
207
-
208
- key = attn.to_k(encoder_hidden_states)
209
- value = attn.to_v(encoder_hidden_states)
210
-
211
- query = attn.head_to_batch_dim(query)
212
- key = attn.head_to_batch_dim(key)
213
- value = attn.head_to_batch_dim(value)
214
-
215
- attention_probs = attn.get_attention_scores(query, key, attention_mask)
216
- hidden_states = torch.bmm(attention_probs, value)
217
- hidden_states = attn.batch_to_head_dim(hidden_states)
218
-
219
- # linear proj
220
- hidden_states = attn.to_out[0](hidden_states)
221
- # dropout
222
- hidden_states = attn.to_out[1](hidden_states)
223
-
224
- if input_ndim == 4:
225
- hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
226
-
227
- if attn.residual_connection:
228
- hidden_states = hidden_states + residual
229
-
230
- hidden_states = hidden_states / attn.rescale_output_factor
231
-
232
- return hidden_states
233
-
234
-
235
- class IPAttnProcessor(nn.Module):
236
- r"""
237
- Attention processor for IP-Adapater.
238
- Args:
239
- hidden_size (`int`):
240
- The hidden size of the attention layer.
241
- cross_attention_dim (`int`):
242
- The number of channels in the `encoder_hidden_states`.
243
- scale (`float`, defaults to 1.0):
244
- the weight scale of image prompt.
245
- num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
246
- The context length of the image features.
247
- """
248
-
249
- def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
250
- super().__init__()
251
-
252
- self.hidden_size = hidden_size
253
- self.cross_attention_dim = cross_attention_dim
254
- self.scale = scale
255
- self.num_tokens = num_tokens
256
-
257
- self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
258
- self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
259
-
260
- def __call__(
261
- self,
262
- attn,
263
- hidden_states,
264
- encoder_hidden_states=None,
265
- attention_mask=None,
266
- temb=None,
267
- ):
268
- residual = hidden_states
269
-
270
- if attn.spatial_norm is not None:
271
- hidden_states = attn.spatial_norm(hidden_states, temb)
272
-
273
- input_ndim = hidden_states.ndim
274
-
275
- if input_ndim == 4:
276
- batch_size, channel, height, width = hidden_states.shape
277
- hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
278
-
279
- batch_size, sequence_length, _ = (
280
- hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
281
- )
282
- attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
283
-
284
- if attn.group_norm is not None:
285
- hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
286
-
287
- query = attn.to_q(hidden_states)
288
-
289
- if encoder_hidden_states is None:
290
- encoder_hidden_states = hidden_states
291
- else:
292
- # get encoder_hidden_states, ip_hidden_states
293
- end_pos = encoder_hidden_states.shape[1] - self.num_tokens
294
- encoder_hidden_states, ip_hidden_states = (
295
- encoder_hidden_states[:, :end_pos, :],
296
- encoder_hidden_states[:, end_pos:, :],
297
- )
298
- if attn.norm_cross:
299
- encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
300
-
301
- key = attn.to_k(encoder_hidden_states)
302
- value = attn.to_v(encoder_hidden_states)
303
-
304
- query = attn.head_to_batch_dim(query)
305
- key = attn.head_to_batch_dim(key)
306
- value = attn.head_to_batch_dim(value)
307
-
308
- if xformers_available:
309
- hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
310
- else:
311
- attention_probs = attn.get_attention_scores(query, key, attention_mask)
312
- hidden_states = torch.bmm(attention_probs, value)
313
- hidden_states = attn.batch_to_head_dim(hidden_states)
314
-
315
- # for ip-adapter
316
- ip_key = self.to_k_ip(ip_hidden_states)
317
- ip_value = self.to_v_ip(ip_hidden_states)
318
-
319
- ip_key = attn.head_to_batch_dim(ip_key)
320
- ip_value = attn.head_to_batch_dim(ip_value)
321
-
322
- if xformers_available:
323
- ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
324
- else:
325
- ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
326
- ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
327
- ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
328
-
329
- hidden_states = hidden_states + self.scale * ip_hidden_states
330
-
331
- # linear proj
332
- hidden_states = attn.to_out[0](hidden_states)
333
- # dropout
334
- hidden_states = attn.to_out[1](hidden_states)
335
-
336
- if input_ndim == 4:
337
- hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
338
-
339
- if attn.residual_connection:
340
- hidden_states = hidden_states + residual
341
-
342
- hidden_states = hidden_states / attn.rescale_output_factor
343
-
344
- return hidden_states
345
-
346
- def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
347
- # TODO attention_mask
348
- query = query.contiguous()
349
- key = key.contiguous()
350
- value = value.contiguous()
351
- hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
352
- return hidden_states
353
-
354
-
355
- EXAMPLE_DOC_STRING = """
356
- Examples:
357
- ```py
358
- >>> # !pip install opencv-python transformers accelerate insightface
359
- >>> import diffusers
360
- >>> from diffusers.utils import load_image
361
- >>> from diffusers.models import ControlNetModel
362
-
363
- >>> import cv2
364
- >>> import torch
365
- >>> import numpy as np
366
- >>> from PIL import Image
367
-
368
- >>> from insightface.app import FaceAnalysis
369
- >>> from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps
370
-
371
- >>> # download 'antelopev2' under ./models
372
- >>> app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
373
- >>> app.prepare(ctx_id=0, det_size=(640, 640))
374
-
375
- >>> # download models under ./checkpoints
376
- >>> face_adapter = f'./checkpoints/ip-adapter.bin'
377
- >>> controlnet_path = f'./checkpoints/ControlNetModel'
378
 
379
- >>> # load IdentityNet
380
- >>> controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
381
-
382
- >>> pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
383
- ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
384
- ... )
385
- >>> pipe.cuda()
386
-
387
- >>> # load adapter
388
- >>> pipe.load_ip_adapter_instantid(face_adapter)
389
-
390
- >>> prompt = "analog film photo of a man. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage, masterpiece, best quality"
391
- >>> negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured (lowres, low quality, worst quality:1.2), (text:1.2), watermark, painting, drawing, illustration, glitch,deformed, mutated, cross-eyed, ugly, disfigured"
392
-
393
- >>> # load an image
394
- >>> image = load_image("your-example.jpg")
395
-
396
- >>> face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))[-1]
397
- >>> face_emb = face_info['embedding']
398
- >>> face_kps = draw_kps(face_image, face_info['kps'])
399
-
400
- >>> pipe.set_ip_adapter_scale(0.8)
401
-
402
- >>> # generate image
403
- >>> image = pipe(
404
- ... prompt, image_embeds=face_emb, image=face_kps, controlnet_conditioning_scale=0.8
405
- ... ).images[0]
406
- ```
407
- """
408
-
409
-
410
- def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
411
- stickwidth = 4
412
- limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
413
- kps = np.array(kps)
414
-
415
- w, h = image_pil.size
416
- out_img = np.zeros([h, w, 3])
417
-
418
- for i in range(len(limbSeq)):
419
- index = limbSeq[i]
420
- color = color_list[index[0]]
421
-
422
- x = kps[index][:, 0]
423
- y = kps[index][:, 1]
424
- length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
425
- angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
426
- polygon = cv2.ellipse2Poly(
427
- (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
428
- )
429
- out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
430
- out_img = (out_img * 0.6).astype(np.uint8)
431
-
432
- for idx_kp, kp in enumerate(kps):
433
- color = color_list[idx_kp]
434
- x, y = kp
435
- out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
436
-
437
- out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
438
- return out_img_pil
439
 
440
 
441
  class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
442
- def cuda(self, dtype=torch.float16, use_xformers=False):
443
  self.to("cuda", dtype)
444
-
445
  if hasattr(self, "image_proj_model"):
446
  self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
447
 
448
  if use_xformers:
449
  if is_xformers_available():
450
- import xformers
451
- from packaging import version
452
-
453
- xformers_version = version.parse(xformers.__version__)
454
- if xformers_version == version.parse("0.0.16"):
455
- logger.warning(
456
- "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
457
- )
458
  self.enable_xformers_memory_efficient_attention()
459
  else:
460
- raise ValueError("xformers is not available. Make sure it is installed correctly")
461
 
462
- def load_ip_adapter_instantid(self, model_ckpt, image_emb_dim=512, num_tokens=16, scale=0.5):
463
  self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
464
  self.set_ip_adapter(model_ckpt, num_tokens, scale)
465
 
466
- def set_image_proj_model(self, model_ckpt, image_emb_dim=512, num_tokens=16):
467
- image_proj_model = Resampler(
468
- dim=1280,
469
- depth=4,
470
- dim_head=64,
471
- heads=20,
472
- num_queries=num_tokens,
473
- embedding_dim=image_emb_dim,
474
- output_dim=self.unet.config.cross_attention_dim,
475
- ff_mult=4,
476
- )
477
-
478
- image_proj_model.eval()
479
 
480
- self.image_proj_model = image_proj_model.to(self.device, dtype=self.dtype)
481
- state_dict = torch.load(model_ckpt, map_location="cpu")
482
- if "image_proj" in state_dict:
483
- state_dict = state_dict["image_proj"]
484
  self.image_proj_model.load_state_dict(state_dict)
485
-
486
  self.image_proj_model_in_features = image_emb_dim
487
 
488
- def set_ip_adapter(self, model_ckpt, num_tokens, scale):
489
- unet = self.unet
490
  attn_procs = {}
491
- for name in unet.attn_processors.keys():
492
- cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
493
- if name.startswith("mid_block"):
494
- hidden_size = unet.config.block_out_channels[-1]
495
- elif name.startswith("up_blocks"):
496
- block_id = int(name[len("up_blocks.")])
497
- hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
498
- elif name.startswith("down_blocks"):
499
- block_id = int(name[len("down_blocks.")])
500
- hidden_size = unet.config.block_out_channels[block_id]
501
- if cross_attention_dim is None:
502
- attn_procs[name] = AttnProcessor().to(unet.device, dtype=unet.dtype)
503
- else:
504
- attn_procs[name] = IPAttnProcessor(
505
- hidden_size=hidden_size,
506
- cross_attention_dim=cross_attention_dim,
507
- scale=scale,
508
- num_tokens=num_tokens,
509
- ).to(unet.device, dtype=unet.dtype)
510
- unet.set_attn_processor(attn_procs)
511
 
512
- state_dict = torch.load(model_ckpt, map_location="cpu")
513
- ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values())
514
- if "ip_adapter" in state_dict:
515
- state_dict = state_dict["ip_adapter"]
516
- ip_layers.load_state_dict(state_dict)
517
-
518
- def set_ip_adapter_scale(self, scale):
519
- unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
520
- for attn_processor in unet.attn_processors.values():
521
- if isinstance(attn_processor, IPAttnProcessor):
522
- attn_processor.scale = scale
523
 
524
  def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
525
- if isinstance(prompt_image_emb, torch.Tensor):
526
- prompt_image_emb = prompt_image_emb.clone().detach()
527
- else:
528
- prompt_image_emb = torch.tensor(prompt_image_emb)
529
-
530
- prompt_image_emb = prompt_image_emb.to(device=device, dtype=dtype)
531
- prompt_image_emb = prompt_image_emb.reshape([1, -1, self.image_proj_model_in_features])
532
 
533
  if do_classifier_free_guidance:
534
  prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
535
- else:
536
- prompt_image_emb = torch.cat([prompt_image_emb], dim=0)
537
- image_proj_model_device = self.image_proj_model.to(device)
538
- prompt_image_emb = image_proj_model_device(prompt_image_emb)
539
- return prompt_image_emb
540
-
541
- @torch.no_grad()
542
- @replace_example_docstring(EXAMPLE_DOC_STRING)
543
- def __call__(
544
- self,
545
- prompt: Union[str, List[str]] = None,
546
- prompt_2: Optional[Union[str, List[str]]] = None,
547
- image: PipelineImageInput = None,
548
- control_image: PipelineImageInput = None,
549
- strength: float = 0.8,
550
- height: Optional[int] = None,
551
- width: Optional[int] = None,
552
- num_inference_steps: int = 50,
553
- guidance_scale: float = 5.0,
554
- negative_prompt: Optional[Union[str, List[str]]] = None,
555
- negative_prompt_2: Optional[Union[str, List[str]]] = None,
556
- num_images_per_prompt: Optional[int] = 1,
557
- eta: float = 0.0,
558
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
559
- latents: Optional[torch.FloatTensor] = None,
560
- prompt_embeds: Optional[torch.FloatTensor] = None,
561
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
562
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
563
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
564
- image_embeds: Optional[torch.FloatTensor] = None,
565
- output_type: Optional[str] = "pil",
566
- return_dict: bool = True,
567
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
568
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
569
- guess_mode: bool = False,
570
- control_guidance_start: Union[float, List[float]] = 0.0,
571
- control_guidance_end: Union[float, List[float]] = 1.0,
572
- original_size: Tuple[int, int] = None,
573
- crops_coords_top_left: Tuple[int, int] = (0, 0),
574
- target_size: Tuple[int, int] = None,
575
- negative_original_size: Optional[Tuple[int, int]] = None,
576
- negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
577
- negative_target_size: Optional[Tuple[int, int]] = None,
578
- aesthetic_score: float = 6.0,
579
- negative_aesthetic_score: float = 2.5,
580
- clip_skip: Optional[int] = None,
581
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
582
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
583
- **kwargs,
584
- ):
585
- r"""
586
- The call function to the pipeline for generation.
587
-
588
- Args:
589
- prompt (`str` or `List[str]`, *optional*):
590
- The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
591
- prompt_2 (`str` or `List[str]`, *optional*):
592
- The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
593
- used in both text-encoders.
594
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
595
- `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
596
- The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
597
- specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
598
- accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
599
- and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
600
- `init`, images must be passed as a list such that each element of the list can be correctly batched for
601
- input to a single ControlNet.
602
- height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
603
- The height in pixels of the generated image. Anything below 512 pixels won't work well for
604
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
605
- and checkpoints that are not specifically fine-tuned on low resolutions.
606
- width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
607
- The width in pixels of the generated image. Anything below 512 pixels won't work well for
608
- [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
609
- and checkpoints that are not specifically fine-tuned on low resolutions.
610
- num_inference_steps (`int`, *optional*, defaults to 50):
611
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
612
- expense of slower inference.
613
- guidance_scale (`float`, *optional*, defaults to 5.0):
614
- A higher guidance scale value encourages the model to generate images closely linked to the text
615
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
616
- negative_prompt (`str` or `List[str]`, *optional*):
617
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
618
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
619
- negative_prompt_2 (`str` or `List[str]`, *optional*):
620
- The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
621
- and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
622
- num_images_per_prompt (`int`, *optional*, defaults to 1):
623
- The number of images to generate per prompt.
624
- eta (`float`, *optional*, defaults to 0.0):
625
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
626
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
627
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
628
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
629
- generation deterministic.
630
- latents (`torch.FloatTensor`, *optional*):
631
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
632
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
633
- tensor is generated by sampling using the supplied random `generator`.
634
- prompt_embeds (`torch.FloatTensor`, *optional*):
635
- Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
636
- provided, text embeddings are generated from the `prompt` input argument.
637
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
638
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
639
- not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
640
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
641
- Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
642
- not provided, pooled text embeddings are generated from `prompt` input argument.
643
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
644
- Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
645
- weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
646
- argument.
647
- image_embeds (`torch.FloatTensor`, *optional*):
648
- Pre-generated image embeddings.
649
- output_type (`str`, *optional*, defaults to `"pil"`):
650
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
651
- return_dict (`bool`, *optional*, defaults to `True`):
652
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
653
- plain tuple.
654
- cross_attention_kwargs (`dict`, *optional*):
655
- A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
656
- [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
657
- controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
658
- The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
659
- to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
660
- the corresponding scale as a list.
661
- guess_mode (`bool`, *optional*, defaults to `False`):
662
- The ControlNet encoder tries to recognize the content of the input image even if you remove all
663
- prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
664
- control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
665
- The percentage of total steps at which the ControlNet starts applying.
666
- control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
667
- The percentage of total steps at which the ControlNet stops applying.
668
- original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
669
- If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
670
- `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
671
- explained in section 2.2 of
672
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
673
- crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
674
- `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
675
- `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
676
- `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
677
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
678
- target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
679
- For most cases, `target_size` should be set to the desired height and width of the generated image. If
680
- not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
681
- section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
682
- negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
683
- To negatively condition the generation process based on a specific image resolution. Part of SDXL's
684
- micro-conditioning as explained in section 2.2 of
685
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
686
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
687
- negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
688
- To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
689
- micro-conditioning as explained in section 2.2 of
690
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
691
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
692
- negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
693
- To negatively condition the generation process based on a target image resolution. It should be as same
694
- as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
695
- [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
696
- information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
697
- clip_skip (`int`, *optional*):
698
- Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
699
- the output of the pre-final layer will be used for computing the prompt embeddings.
700
- callback_on_step_end (`Callable`, *optional*):
701
- A function that calls at the end of each denoising steps during the inference. The function is called
702
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
703
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
704
- `callback_on_step_end_tensor_inputs`.
705
- callback_on_step_end_tensor_inputs (`List`, *optional*):
706
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
707
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
708
- `._callback_tensor_inputs` attribute of your pipeline class.
709
-
710
- Examples:
711
-
712
- Returns:
713
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
714
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
715
- otherwise a `tuple` is returned containing the output images.
716
- """
717
-
718
- callback = kwargs.pop("callback", None)
719
- callback_steps = kwargs.pop("callback_steps", None)
720
-
721
- if callback is not None:
722
- deprecate(
723
- "callback",
724
- "1.0.0",
725
- "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
726
- )
727
- if callback_steps is not None:
728
- deprecate(
729
- "callback_steps",
730
- "1.0.0",
731
- "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
732
- )
733
-
734
- controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
735
-
736
- # align format for control guidance
737
- if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
738
- control_guidance_start = len(control_guidance_end) * [control_guidance_start]
739
- elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
740
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
741
- elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
742
- mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
743
- control_guidance_start, control_guidance_end = (
744
- mult * [control_guidance_start],
745
- mult * [control_guidance_end],
746
- )
747
-
748
- # 1. Check inputs. Raise error if not correct
749
- self.check_inputs(
750
- prompt,
751
- prompt_2,
752
- control_image,
753
- strength,
754
- num_inference_steps,
755
- callback_steps,
756
- negative_prompt,
757
- negative_prompt_2,
758
- prompt_embeds,
759
- negative_prompt_embeds,
760
- pooled_prompt_embeds,
761
- negative_pooled_prompt_embeds,
762
- None,
763
- None,
764
- controlnet_conditioning_scale,
765
- control_guidance_start,
766
- control_guidance_end,
767
- callback_on_step_end_tensor_inputs,
768
- )
769
-
770
- self._guidance_scale = guidance_scale
771
- self._clip_skip = clip_skip
772
- self._cross_attention_kwargs = cross_attention_kwargs
773
-
774
- # 2. Define call parameters
775
- if prompt is not None and isinstance(prompt, str):
776
- batch_size = 1
777
- elif prompt is not None and isinstance(prompt, list):
778
- batch_size = len(prompt)
779
- else:
780
- batch_size = prompt_embeds.shape[0]
781
-
782
- device = self._execution_device
783
-
784
- if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
785
- controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
786
-
787
- global_pool_conditions = (
788
- controlnet.config.global_pool_conditions
789
- if isinstance(controlnet, ControlNetModel)
790
- else controlnet.nets[0].config.global_pool_conditions
791
- )
792
- guess_mode = guess_mode or global_pool_conditions
793
-
794
- # 3.1 Encode input prompt
795
- text_encoder_lora_scale = (
796
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
797
- )
798
- (
799
- prompt_embeds,
800
- negative_prompt_embeds,
801
- pooled_prompt_embeds,
802
- negative_pooled_prompt_embeds,
803
- ) = self.encode_prompt(
804
- prompt,
805
- prompt_2,
806
- device,
807
- num_images_per_prompt,
808
- self.do_classifier_free_guidance,
809
- negative_prompt,
810
- negative_prompt_2,
811
- prompt_embeds=prompt_embeds,
812
- negative_prompt_embeds=negative_prompt_embeds,
813
- pooled_prompt_embeds=pooled_prompt_embeds,
814
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
815
- lora_scale=text_encoder_lora_scale,
816
- clip_skip=self.clip_skip,
817
- )
818
-
819
- # 3.2 Encode image prompt
820
- prompt_image_emb = self._encode_prompt_image_emb(
821
- image_embeds, device, self.unet.dtype, self.do_classifier_free_guidance
822
- )
823
- bs_embed, seq_len, _ = prompt_image_emb.shape
824
- prompt_image_emb = prompt_image_emb.repeat(1, num_images_per_prompt, 1)
825
- prompt_image_emb = prompt_image_emb.view(bs_embed * num_images_per_prompt, seq_len, -1)
826
-
827
- # 4. Prepare image and controlnet_conditioning_image
828
- image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
829
-
830
- if isinstance(controlnet, ControlNetModel):
831
- control_image = self.prepare_control_image(
832
- image=control_image,
833
- width=width,
834
- height=height,
835
- batch_size=batch_size * num_images_per_prompt,
836
- num_images_per_prompt=num_images_per_prompt,
837
- device=device,
838
- dtype=controlnet.dtype,
839
- do_classifier_free_guidance=self.do_classifier_free_guidance,
840
- guess_mode=guess_mode,
841
- )
842
- height, width = control_image.shape[-2:]
843
- elif isinstance(controlnet, MultiControlNetModel):
844
- control_images = []
845
-
846
- for control_image_ in control_image:
847
- control_image_ = self.prepare_control_image(
848
- image=control_image_,
849
- width=width,
850
- height=height,
851
- batch_size=batch_size * num_images_per_prompt,
852
- num_images_per_prompt=num_images_per_prompt,
853
- device=device,
854
- dtype=controlnet.dtype,
855
- do_classifier_free_guidance=self.do_classifier_free_guidance,
856
- guess_mode=guess_mode,
857
- )
858
-
859
- control_images.append(control_image_)
860
-
861
- control_image = control_images
862
- height, width = control_image[0].shape[-2:]
863
- else:
864
- assert False
865
-
866
- # 5. Prepare timesteps
867
- self.scheduler.set_timesteps(num_inference_steps, device=device)
868
- timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
869
- latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
870
- self._num_timesteps = len(timesteps)
871
-
872
- # 6. Prepare latent variables
873
- latents = self.prepare_latents(
874
- image,
875
- latent_timestep,
876
- batch_size,
877
- num_images_per_prompt,
878
- prompt_embeds.dtype,
879
- device,
880
- generator,
881
- True,
882
- )
883
-
884
- # # 6.5 Optionally get Guidance Scale Embedding
885
- timestep_cond = None
886
- if self.unet.config.time_cond_proj_dim is not None:
887
- guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
888
- timestep_cond = self.get_guidance_scale_embedding(
889
- guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
890
- ).to(device=device, dtype=latents.dtype)
891
-
892
- # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
893
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
894
-
895
- # 7.1 Create tensor stating which controlnets to keep
896
- controlnet_keep = []
897
- for i in range(len(timesteps)):
898
- keeps = [
899
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
900
- for s, e in zip(control_guidance_start, control_guidance_end)
901
- ]
902
- controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
903
-
904
- # 7.2 Prepare added time ids & embeddings
905
- if isinstance(control_image, list):
906
- original_size = original_size or control_image[0].shape[-2:]
907
- else:
908
- original_size = original_size or control_image.shape[-2:]
909
- target_size = target_size or (height, width)
910
-
911
- if negative_original_size is None:
912
- negative_original_size = original_size
913
- if negative_target_size is None:
914
- negative_target_size = target_size
915
- add_text_embeds = pooled_prompt_embeds
916
-
917
- if self.text_encoder_2 is None:
918
- text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
919
- else:
920
- text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
921
-
922
- add_time_ids, add_neg_time_ids = self._get_add_time_ids(
923
- original_size,
924
- crops_coords_top_left,
925
- target_size,
926
- aesthetic_score,
927
- negative_aesthetic_score,
928
- negative_original_size,
929
- negative_crops_coords_top_left,
930
- negative_target_size,
931
- dtype=prompt_embeds.dtype,
932
- text_encoder_projection_dim=text_encoder_projection_dim,
933
- )
934
- add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
935
-
936
- if self.do_classifier_free_guidance:
937
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
938
- add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
939
- add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
940
- add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
941
-
942
- prompt_embeds = prompt_embeds.to(device)
943
- add_text_embeds = add_text_embeds.to(device)
944
- add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
945
- encoder_hidden_states = torch.cat([prompt_embeds, prompt_image_emb], dim=1)
946
-
947
- # 8. Denoising loop
948
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
949
- is_unet_compiled = is_compiled_module(self.unet)
950
- is_controlnet_compiled = is_compiled_module(self.controlnet)
951
- is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
952
-
953
- with self.progress_bar(total=num_inference_steps) as progress_bar:
954
- for i, t in enumerate(timesteps):
955
- # Relevant thread:
956
- # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
957
- if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
958
- torch._inductor.cudagraph_mark_step_begin()
959
- # expand the latents if we are doing classifier free guidance
960
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
961
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
962
-
963
- added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
964
-
965
- # controlnet(s) inference
966
- if guess_mode and self.do_classifier_free_guidance:
967
- # Infer ControlNet only for the conditional batch.
968
- control_model_input = latents
969
- control_model_input = self.scheduler.scale_model_input(control_model_input, t)
970
- controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
971
- controlnet_added_cond_kwargs = {
972
- "text_embeds": add_text_embeds.chunk(2)[1],
973
- "time_ids": add_time_ids.chunk(2)[1],
974
- }
975
- else:
976
- control_model_input = latent_model_input
977
- controlnet_prompt_embeds = prompt_embeds
978
- controlnet_added_cond_kwargs = added_cond_kwargs
979
-
980
- if isinstance(controlnet_keep[i], list):
981
- cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
982
- else:
983
- controlnet_cond_scale = controlnet_conditioning_scale
984
- if isinstance(controlnet_cond_scale, list):
985
- controlnet_cond_scale = controlnet_cond_scale[0]
986
- cond_scale = controlnet_cond_scale * controlnet_keep[i]
987
-
988
- down_block_res_samples, mid_block_res_sample = self.controlnet(
989
- control_model_input,
990
- t,
991
- encoder_hidden_states=prompt_image_emb,
992
- controlnet_cond=control_image,
993
- conditioning_scale=cond_scale,
994
- guess_mode=guess_mode,
995
- added_cond_kwargs=controlnet_added_cond_kwargs,
996
- return_dict=False,
997
- )
998
-
999
- if guess_mode and self.do_classifier_free_guidance:
1000
- # Infered ControlNet only for the conditional batch.
1001
- # To apply the output of ControlNet to both the unconditional and conditional batches,
1002
- # add 0 to the unconditional batch to keep it unchanged.
1003
- down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1004
- mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1005
-
1006
- # predict the noise residual
1007
- noise_pred = self.unet(
1008
- latent_model_input,
1009
- t,
1010
- encoder_hidden_states=encoder_hidden_states,
1011
- timestep_cond=timestep_cond,
1012
- cross_attention_kwargs=self.cross_attention_kwargs,
1013
- down_block_additional_residuals=down_block_res_samples,
1014
- mid_block_additional_residual=mid_block_res_sample,
1015
- added_cond_kwargs=added_cond_kwargs,
1016
- return_dict=False,
1017
- )[0]
1018
-
1019
- # perform guidance
1020
- if self.do_classifier_free_guidance:
1021
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1022
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1023
-
1024
- # compute the previous noisy sample x_t -> x_t-1
1025
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1026
-
1027
- if callback_on_step_end is not None:
1028
- callback_kwargs = {}
1029
- for k in callback_on_step_end_tensor_inputs:
1030
- callback_kwargs[k] = locals()[k]
1031
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1032
-
1033
- latents = callback_outputs.pop("latents", latents)
1034
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1035
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1036
-
1037
- # call the callback, if provided
1038
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1039
- progress_bar.update()
1040
- if callback is not None and i % callback_steps == 0:
1041
- step_idx = i // getattr(self.scheduler, "order", 1)
1042
- callback(step_idx, t, latents)
1043
-
1044
- if not output_type == "latent":
1045
- # make sure the VAE is in float32 mode, as it overflows in float16
1046
- needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1047
- if needs_upcasting:
1048
- self.upcast_vae()
1049
- latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1050
-
1051
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1052
-
1053
- # cast back to fp16 if needed
1054
- if needs_upcasting:
1055
- self.vae.to(dtype=torch.float16)
1056
- else:
1057
- image = latents
1058
-
1059
- if not output_type == "latent":
1060
- # apply watermark if available
1061
- if self.watermark is not None:
1062
- image = self.watermark.apply_watermark(image)
1063
-
1064
- image = self.image_processor.postprocess(image, output_type=output_type)
1065
-
1066
- # Offload all models
1067
- self.maybe_free_model_hooks()
1068
-
1069
- if not return_dict:
1070
- return (image,)
1071
 
1072
- return StableDiffusionXLPipelineOutput(images=image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import math
2
  from typing import Any, Callable, Dict, List, Optional, Tuple, Union
3
 
 
6
  import PIL.Image
7
  import torch
8
  import torch.nn as nn
 
9
  from diffusers import StableDiffusionXLControlNetImg2ImgPipeline
10
  from diffusers.image_processor import PipelineImageInput
11
  from diffusers.models import ControlNetModel
12
  from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
13
  from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
14
+ from diffusers.utils import deprecate, logging, replace_example_docstring
 
 
 
 
15
  from diffusers.utils.import_utils import is_xformers_available
16
  from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
17
 
18
+ logger = logging.get_logger(__name__) # Initialize logger
19
 
20
+ # Check for xformers availability
21
  try:
22
  import xformers
23
  import xformers.ops
24
 
25
  xformers_available = True
26
+ except ImportError:
27
  xformers_available = False
28
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ def reshape_tensor(x: torch.Tensor, heads: int) -> torch.Tensor:
31
+ """Reshapes tensor for multi-head attention processing."""
32
  bs, length, width = x.shape
33
+ return x.view(bs, length, heads, -1).transpose(1, 2)
 
 
 
 
 
 
34
 
35
 
36
  class PerceiverAttention(nn.Module):
37
+ def __init__(self, dim: int, dim_head: int = 64, heads: int = 8):
38
  super().__init__()
39
  self.scale = dim_head**-0.5
40
  self.dim_head = dim_head
 
43
 
44
  self.norm1 = nn.LayerNorm(dim)
45
  self.norm2 = nn.LayerNorm(dim)
 
46
  self.to_q = nn.Linear(dim, inner_dim, bias=False)
47
  self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
48
  self.to_out = nn.Linear(inner_dim, dim, bias=False)
49
 
50
+ def forward(self, x: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
51
+ x, latents = self.norm1(x), self.norm2(latents)
52
+ q, kv = self.to_q(latents), self.to_kv(torch.cat((x, latents), dim=1))
53
+ k, v = kv.chunk(2, dim=-1)
 
 
 
 
 
 
 
 
54
 
55
+ q, k, v = map(lambda t: reshape_tensor(t, self.heads), (q, k, v))
 
 
56
 
57
+ # Scaled dot-product attention
 
 
 
 
58
  scale = 1 / math.sqrt(math.sqrt(self.dim_head))
59
+ weight = (q * scale) @ (k * scale).transpose(-2, -1)
60
+ weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype)
61
  out = weight @ v
62
 
63
+ return self.to_out(out.permute(0, 2, 1, 3).reshape(latents.shape[0], latents.shape[1], -1))
 
 
64
 
65
 
66
  class Resampler(nn.Module):
67
  def __init__(
68
  self,
69
+ dim: int = 1024,
70
+ depth: int = 8,
71
+ dim_head: int = 64,
72
+ heads: int = 16,
73
+ num_queries: int = 8,
74
+ embedding_dim: int = 768,
75
+ output_dim: int = 1024,
76
+ ff_mult: int = 4,
77
  ):
78
  super().__init__()
79
+ self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / math.sqrt(dim))
 
 
80
  self.proj_in = nn.Linear(embedding_dim, dim)
 
81
  self.proj_out = nn.Linear(dim, output_dim)
82
  self.norm_out = nn.LayerNorm(output_dim)
83
+ self.layers = nn.ModuleList([nn.ModuleList([PerceiverAttention(dim, dim_head, heads), nn.LayerNorm(dim)]) for _ in range(depth)])
84
 
85
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
86
+ latents = self.latents.expand(x.size(0), -1, -1)
 
 
 
 
 
 
 
 
 
 
 
87
  x = self.proj_in(x)
88
 
89
+ for attn, norm in self.layers:
90
+ latents = norm(attn(x, latents) + latents)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
+ return self.norm_out(self.proj_out(latents))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
 
95
  class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline):
96
+ def cuda(self, dtype: torch.dtype = torch.float16, use_xformers: bool = False):
97
  self.to("cuda", dtype)
 
98
  if hasattr(self, "image_proj_model"):
99
  self.image_proj_model.to(self.unet.device).to(self.unet.dtype)
100
 
101
  if use_xformers:
102
  if is_xformers_available():
 
 
 
 
 
 
 
 
103
  self.enable_xformers_memory_efficient_attention()
104
  else:
105
+ raise ValueError("xFormers is not available. Ensure it is installed correctly.")
106
 
107
+ def load_ip_adapter_instantid(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16, scale: float = 0.5):
108
  self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens)
109
  self.set_ip_adapter(model_ckpt, num_tokens, scale)
110
 
111
+ def set_image_proj_model(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16):
112
+ self.image_proj_model = Resampler(
113
+ dim=1280, depth=4, dim_head=64, heads=20, num_queries=num_tokens, embedding_dim=image_emb_dim, output_dim=self.unet.config.cross_attention_dim
114
+ ).to(self.device, dtype=self.dtype).eval()
 
 
 
 
 
 
 
 
 
115
 
116
+ state_dict = torch.load(model_ckpt, map_location="cpu").get("image_proj", torch.load(model_ckpt, map_location="cpu"))
 
 
 
117
  self.image_proj_model.load_state_dict(state_dict)
 
118
  self.image_proj_model_in_features = image_emb_dim
119
 
120
+ def set_ip_adapter(self, model_ckpt: str, num_tokens: int, scale: float):
 
121
  attn_procs = {}
122
+ for name, module in self.unet.attn_processors.items():
123
+ cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim
124
+ hidden_size = self.unet.config.block_out_channels[{"mid_block": -1, "up_blocks": int(name[9]), "down_blocks": int(name[12])}[name.split(".")[0]]]
125
+ attn_procs[name] = (IPAttnProcessor(hidden_size, cross_attention_dim, scale, num_tokens)
126
+ if cross_attention_dim else nn.Identity()).to(self.unet.device, dtype=self.unet.dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
+ self.unet.set_attn_processor(attn_procs)
129
+ self.unet.attn_processors.load_state_dict(torch.load(model_ckpt, map_location="cpu").get("ip_adapter", torch.load(model_ckpt, map_location="cpu")))
 
 
 
 
 
 
 
 
 
130
 
131
  def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance):
132
+ prompt_image_emb = torch.tensor(prompt_image_emb) if not isinstance(prompt_image_emb, torch.Tensor) else prompt_image_emb.clone().detach()
133
+ prompt_image_emb = prompt_image_emb.to(device, dtype=dtype).reshape([1, -1, self.image_proj_model_in_features])
 
 
 
 
 
134
 
135
  if do_classifier_free_guidance:
136
  prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
+ return self.image_proj_model.to(device)(prompt_image_emb)