Spaces:
Runtime error
Runtime error
Update lora.py
Browse files
lora.py
CHANGED
|
@@ -1,1222 +1,96 @@
|
|
| 1 |
-
# LoRA network module taken from https://github.com/bmaltais/kohya_ss/blob/master/networks/lora.py
|
| 2 |
-
# reference:
|
| 3 |
-
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
| 4 |
-
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
| 5 |
-
|
| 6 |
import math
|
| 7 |
-
import os
|
| 8 |
-
from typing import Dict, List, Optional, Tuple, Type, Union
|
| 9 |
-
from diffusers import AutoencoderKL
|
| 10 |
-
from transformers import CLIPTextModel
|
| 11 |
-
import numpy as np
|
| 12 |
import torch
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
|
| 17 |
-
|
| 18 |
-
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
|
| 19 |
|
| 20 |
-
|
| 21 |
-
class LoRAModule(torch.nn.Module):
|
| 22 |
"""
|
| 23 |
-
replaces forward method of
|
| 24 |
"""
|
| 25 |
|
| 26 |
def __init__(
|
| 27 |
self,
|
| 28 |
-
lora_name,
|
| 29 |
-
org_module:
|
| 30 |
-
multiplier=1.0,
|
| 31 |
-
lora_dim=4,
|
| 32 |
-
alpha=1,
|
| 33 |
-
dropout=None,
|
| 34 |
-
rank_dropout=None,
|
| 35 |
-
module_dropout=None,
|
| 36 |
-
):
|
| 37 |
-
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
| 38 |
-
super().__init__()
|
| 39 |
-
self.lora_name = lora_name
|
| 40 |
-
|
| 41 |
-
if org_module.__class__.__name__ == "Conv2d":
|
| 42 |
-
in_dim = org_module.in_channels
|
| 43 |
-
out_dim = org_module.out_channels
|
| 44 |
-
else:
|
| 45 |
-
in_dim = org_module.in_features
|
| 46 |
-
out_dim = org_module.out_features
|
| 47 |
-
|
| 48 |
-
# if limit_rank:
|
| 49 |
-
# self.lora_dim = min(lora_dim, in_dim, out_dim)
|
| 50 |
-
# if self.lora_dim != lora_dim:
|
| 51 |
-
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
| 52 |
-
# else:
|
| 53 |
-
self.lora_dim = lora_dim
|
| 54 |
-
|
| 55 |
-
if org_module.__class__.__name__ == "Conv2d":
|
| 56 |
-
kernel_size = org_module.kernel_size
|
| 57 |
-
stride = org_module.stride
|
| 58 |
-
padding = org_module.padding
|
| 59 |
-
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
| 60 |
-
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
| 61 |
-
else:
|
| 62 |
-
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
| 63 |
-
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
| 64 |
-
|
| 65 |
-
if type(alpha) == torch.Tensor:
|
| 66 |
-
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
| 67 |
-
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
| 68 |
-
self.scale = alpha / self.lora_dim
|
| 69 |
-
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
| 70 |
-
|
| 71 |
-
# same as microsoft's
|
| 72 |
-
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
| 73 |
-
torch.nn.init.zeros_(self.lora_up.weight)
|
| 74 |
-
|
| 75 |
-
self.multiplier = multiplier
|
| 76 |
-
self.org_module = org_module # remove in applying
|
| 77 |
-
self.dropout = dropout
|
| 78 |
-
self.rank_dropout = rank_dropout
|
| 79 |
-
self.module_dropout = module_dropout
|
| 80 |
-
|
| 81 |
-
def apply_to(self):
|
| 82 |
-
self.org_forward = self.org_module.forward
|
| 83 |
-
self.org_module.forward = self.forward
|
| 84 |
-
del self.org_module
|
| 85 |
-
|
| 86 |
-
def forward(self, x):
|
| 87 |
-
org_forwarded = self.org_forward(x)
|
| 88 |
-
|
| 89 |
-
# module dropout
|
| 90 |
-
if self.module_dropout is not None and self.training:
|
| 91 |
-
if torch.rand(1) < self.module_dropout:
|
| 92 |
-
return org_forwarded
|
| 93 |
-
|
| 94 |
-
lx = self.lora_down(x)
|
| 95 |
-
|
| 96 |
-
# normal dropout
|
| 97 |
-
if self.dropout is not None and self.training:
|
| 98 |
-
lx = torch.nn.functional.dropout(lx, p=self.dropout)
|
| 99 |
-
|
| 100 |
-
# rank dropout
|
| 101 |
-
if self.rank_dropout is not None and self.training:
|
| 102 |
-
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
|
| 103 |
-
if len(lx.size()) == 3:
|
| 104 |
-
mask = mask.unsqueeze(1) # for Text Encoder
|
| 105 |
-
elif len(lx.size()) == 4:
|
| 106 |
-
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
|
| 107 |
-
lx = lx * mask
|
| 108 |
-
|
| 109 |
-
# scaling for rank dropout: treat as if the rank is changed
|
| 110 |
-
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
|
| 111 |
-
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
|
| 112 |
-
else:
|
| 113 |
-
scale = self.scale
|
| 114 |
-
|
| 115 |
-
lx = self.lora_up(lx)
|
| 116 |
-
|
| 117 |
-
return org_forwarded + lx * self.multiplier * scale
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
class LoRAInfModule(LoRAModule):
|
| 121 |
-
def __init__(
|
| 122 |
-
self,
|
| 123 |
-
lora_name,
|
| 124 |
-
org_module: torch.nn.Module,
|
| 125 |
-
multiplier=1.0,
|
| 126 |
-
lora_dim=4,
|
| 127 |
-
alpha=1,
|
| 128 |
-
**kwargs,
|
| 129 |
-
):
|
| 130 |
-
# no dropout for inference
|
| 131 |
-
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
|
| 132 |
-
|
| 133 |
-
self.org_module_ref = [org_module] # 後から参照できるように
|
| 134 |
-
self.enabled = True
|
| 135 |
-
|
| 136 |
-
# check regional or not by lora_name
|
| 137 |
-
self.text_encoder = False
|
| 138 |
-
if lora_name.startswith("lora_te_"):
|
| 139 |
-
self.regional = False
|
| 140 |
-
self.use_sub_prompt = True
|
| 141 |
-
self.text_encoder = True
|
| 142 |
-
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name:
|
| 143 |
-
self.regional = False
|
| 144 |
-
self.use_sub_prompt = True
|
| 145 |
-
elif "time_emb" in lora_name:
|
| 146 |
-
self.regional = False
|
| 147 |
-
self.use_sub_prompt = False
|
| 148 |
-
else:
|
| 149 |
-
self.regional = True
|
| 150 |
-
self.use_sub_prompt = False
|
| 151 |
-
|
| 152 |
-
self.network: LoRANetwork = None
|
| 153 |
-
|
| 154 |
-
def set_network(self, network):
|
| 155 |
-
self.network = network
|
| 156 |
-
|
| 157 |
-
# freezeしてマージする
|
| 158 |
-
def merge_to(self, sd, dtype, device):
|
| 159 |
-
# get up/down weight
|
| 160 |
-
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
|
| 161 |
-
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
|
| 162 |
-
|
| 163 |
-
# extract weight from org_module
|
| 164 |
-
org_sd = self.org_module.state_dict()
|
| 165 |
-
weight = org_sd["weight"].to(torch.float)
|
| 166 |
-
|
| 167 |
-
# merge weight
|
| 168 |
-
if len(weight.size()) == 2:
|
| 169 |
-
# linear
|
| 170 |
-
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
|
| 171 |
-
elif down_weight.size()[2:4] == (1, 1):
|
| 172 |
-
# conv2d 1x1
|
| 173 |
-
weight = (
|
| 174 |
-
weight
|
| 175 |
-
+ self.multiplier
|
| 176 |
-
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
| 177 |
-
* self.scale
|
| 178 |
-
)
|
| 179 |
-
else:
|
| 180 |
-
# conv2d 3x3
|
| 181 |
-
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
| 182 |
-
# print(conved.size(), weight.size(), module.stride, module.padding)
|
| 183 |
-
weight = weight + self.multiplier * conved * self.scale
|
| 184 |
-
|
| 185 |
-
# set weight to org_module
|
| 186 |
-
org_sd["weight"] = weight.to(dtype)
|
| 187 |
-
self.org_module.load_state_dict(org_sd)
|
| 188 |
-
|
| 189 |
-
# 復元できるマージのため、このモジュールのweightを返す
|
| 190 |
-
def get_weight(self, multiplier=None):
|
| 191 |
-
if multiplier is None:
|
| 192 |
-
multiplier = self.multiplier
|
| 193 |
-
|
| 194 |
-
# get up/down weight from module
|
| 195 |
-
up_weight = self.lora_up.weight.to(torch.float)
|
| 196 |
-
down_weight = self.lora_down.weight.to(torch.float)
|
| 197 |
-
|
| 198 |
-
# pre-calculated weight
|
| 199 |
-
if len(down_weight.size()) == 2:
|
| 200 |
-
# linear
|
| 201 |
-
weight = self.multiplier * (up_weight @ down_weight) * self.scale
|
| 202 |
-
elif down_weight.size()[2:4] == (1, 1):
|
| 203 |
-
# conv2d 1x1
|
| 204 |
-
weight = (
|
| 205 |
-
self.multiplier
|
| 206 |
-
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
| 207 |
-
* self.scale
|
| 208 |
-
)
|
| 209 |
-
else:
|
| 210 |
-
# conv2d 3x3
|
| 211 |
-
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
| 212 |
-
weight = self.multiplier * conved * self.scale
|
| 213 |
-
|
| 214 |
-
return weight
|
| 215 |
-
|
| 216 |
-
def set_region(self, region):
|
| 217 |
-
self.region = region
|
| 218 |
-
self.region_mask = None
|
| 219 |
-
|
| 220 |
-
def default_forward(self, x):
|
| 221 |
-
# print("default_forward", self.lora_name, x.size())
|
| 222 |
-
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
| 223 |
-
|
| 224 |
-
def forward(self, x):
|
| 225 |
-
if not self.enabled:
|
| 226 |
-
return self.org_forward(x)
|
| 227 |
-
|
| 228 |
-
if self.network is None or self.network.sub_prompt_index is None:
|
| 229 |
-
return self.default_forward(x)
|
| 230 |
-
if not self.regional and not self.use_sub_prompt:
|
| 231 |
-
return self.default_forward(x)
|
| 232 |
-
|
| 233 |
-
if self.regional:
|
| 234 |
-
return self.regional_forward(x)
|
| 235 |
-
else:
|
| 236 |
-
return self.sub_prompt_forward(x)
|
| 237 |
-
|
| 238 |
-
def get_mask_for_x(self, x):
|
| 239 |
-
# calculate size from shape of x
|
| 240 |
-
if len(x.size()) == 4:
|
| 241 |
-
h, w = x.size()[2:4]
|
| 242 |
-
area = h * w
|
| 243 |
-
else:
|
| 244 |
-
area = x.size()[1]
|
| 245 |
-
|
| 246 |
-
mask = self.network.mask_dic[area]
|
| 247 |
-
if mask is None:
|
| 248 |
-
raise ValueError(f"mask is None for resolution {area}")
|
| 249 |
-
if len(x.size()) != 4:
|
| 250 |
-
mask = torch.reshape(mask, (1, -1, 1))
|
| 251 |
-
return mask
|
| 252 |
-
|
| 253 |
-
def regional_forward(self, x):
|
| 254 |
-
if "attn2_to_out" in self.lora_name:
|
| 255 |
-
return self.to_out_forward(x)
|
| 256 |
-
|
| 257 |
-
if self.network.mask_dic is None: # sub_prompt_index >= 3
|
| 258 |
-
return self.default_forward(x)
|
| 259 |
-
|
| 260 |
-
# apply mask for LoRA result
|
| 261 |
-
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
| 262 |
-
mask = self.get_mask_for_x(lx)
|
| 263 |
-
# print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size())
|
| 264 |
-
lx = lx * mask
|
| 265 |
-
|
| 266 |
-
x = self.org_forward(x)
|
| 267 |
-
x = x + lx
|
| 268 |
-
|
| 269 |
-
if "attn2_to_q" in self.lora_name and self.network.is_last_network:
|
| 270 |
-
x = self.postp_to_q(x)
|
| 271 |
-
|
| 272 |
-
return x
|
| 273 |
-
|
| 274 |
-
def postp_to_q(self, x):
|
| 275 |
-
# repeat x to num_sub_prompts
|
| 276 |
-
has_real_uncond = x.size()[0] // self.network.batch_size == 3
|
| 277 |
-
qc = self.network.batch_size # uncond
|
| 278 |
-
qc += self.network.batch_size * self.network.num_sub_prompts # cond
|
| 279 |
-
if has_real_uncond:
|
| 280 |
-
qc += self.network.batch_size # real_uncond
|
| 281 |
-
|
| 282 |
-
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype)
|
| 283 |
-
query[: self.network.batch_size] = x[: self.network.batch_size]
|
| 284 |
-
|
| 285 |
-
for i in range(self.network.batch_size):
|
| 286 |
-
qi = self.network.batch_size + i * self.network.num_sub_prompts
|
| 287 |
-
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i]
|
| 288 |
-
|
| 289 |
-
if has_real_uncond:
|
| 290 |
-
query[-self.network.batch_size :] = x[-self.network.batch_size :]
|
| 291 |
-
|
| 292 |
-
# print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts)
|
| 293 |
-
return query
|
| 294 |
-
|
| 295 |
-
def sub_prompt_forward(self, x):
|
| 296 |
-
if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA
|
| 297 |
-
return self.org_forward(x)
|
| 298 |
-
|
| 299 |
-
emb_idx = self.network.sub_prompt_index
|
| 300 |
-
if not self.text_encoder:
|
| 301 |
-
emb_idx += self.network.batch_size
|
| 302 |
-
|
| 303 |
-
# apply sub prompt of X
|
| 304 |
-
lx = x[emb_idx :: self.network.num_sub_prompts]
|
| 305 |
-
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale
|
| 306 |
-
|
| 307 |
-
# print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx)
|
| 308 |
-
|
| 309 |
-
x = self.org_forward(x)
|
| 310 |
-
x[emb_idx :: self.network.num_sub_prompts] += lx
|
| 311 |
-
|
| 312 |
-
return x
|
| 313 |
-
|
| 314 |
-
def to_out_forward(self, x):
|
| 315 |
-
# print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network)
|
| 316 |
-
|
| 317 |
-
if self.network.is_last_network:
|
| 318 |
-
masks = [None] * self.network.num_sub_prompts
|
| 319 |
-
self.network.shared[self.lora_name] = (None, masks)
|
| 320 |
-
else:
|
| 321 |
-
lx, masks = self.network.shared[self.lora_name]
|
| 322 |
-
|
| 323 |
-
# call own LoRA
|
| 324 |
-
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts]
|
| 325 |
-
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale
|
| 326 |
-
|
| 327 |
-
if self.network.is_last_network:
|
| 328 |
-
lx = torch.zeros(
|
| 329 |
-
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype
|
| 330 |
-
)
|
| 331 |
-
self.network.shared[self.lora_name] = (lx, masks)
|
| 332 |
-
|
| 333 |
-
# print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts)
|
| 334 |
-
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1
|
| 335 |
-
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1)
|
| 336 |
-
|
| 337 |
-
# if not last network, return x and masks
|
| 338 |
-
x = self.org_forward(x)
|
| 339 |
-
if not self.network.is_last_network:
|
| 340 |
-
return x
|
| 341 |
-
|
| 342 |
-
lx, masks = self.network.shared.pop(self.lora_name)
|
| 343 |
-
|
| 344 |
-
# if last network, combine separated x with mask weighted sum
|
| 345 |
-
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2
|
| 346 |
-
|
| 347 |
-
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype)
|
| 348 |
-
out[: self.network.batch_size] = x[: self.network.batch_size] # uncond
|
| 349 |
-
if has_real_uncond:
|
| 350 |
-
out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond
|
| 351 |
-
|
| 352 |
-
# print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts)
|
| 353 |
-
# for i in range(len(masks)):
|
| 354 |
-
# if masks[i] is None:
|
| 355 |
-
# masks[i] = torch.zeros_like(masks[-1])
|
| 356 |
-
|
| 357 |
-
mask = torch.cat(masks)
|
| 358 |
-
mask_sum = torch.sum(mask, dim=0) + 1e-4
|
| 359 |
-
for i in range(self.network.batch_size):
|
| 360 |
-
# 1枚の画像ごとに処理する
|
| 361 |
-
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts]
|
| 362 |
-
lx1 = lx1 * mask
|
| 363 |
-
lx1 = torch.sum(lx1, dim=0)
|
| 364 |
-
|
| 365 |
-
xi = self.network.batch_size + i * self.network.num_sub_prompts
|
| 366 |
-
x1 = x[xi : xi + self.network.num_sub_prompts]
|
| 367 |
-
x1 = x1 * mask
|
| 368 |
-
x1 = torch.sum(x1, dim=0)
|
| 369 |
-
x1 = x1 / mask_sum
|
| 370 |
-
|
| 371 |
-
x1 = x1 + lx1
|
| 372 |
-
out[self.network.batch_size + i] = x1
|
| 373 |
-
|
| 374 |
-
# print("to_out_forward", x.size(), out.size(), has_real_uncond)
|
| 375 |
-
return out
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
def parse_block_lr_kwargs(nw_kwargs):
|
| 379 |
-
down_lr_weight = nw_kwargs.get("down_lr_weight", None)
|
| 380 |
-
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None)
|
| 381 |
-
up_lr_weight = nw_kwargs.get("up_lr_weight", None)
|
| 382 |
-
|
| 383 |
-
# 以上のいずれにも設定がない場合は無効としてNoneを返す
|
| 384 |
-
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None:
|
| 385 |
-
return None, None, None
|
| 386 |
-
|
| 387 |
-
# extract learning rate weight for each block
|
| 388 |
-
if down_lr_weight is not None:
|
| 389 |
-
# if some parameters are not set, use zero
|
| 390 |
-
if "," in down_lr_weight:
|
| 391 |
-
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")]
|
| 392 |
-
|
| 393 |
-
if mid_lr_weight is not None:
|
| 394 |
-
mid_lr_weight = float(mid_lr_weight)
|
| 395 |
-
|
| 396 |
-
if up_lr_weight is not None:
|
| 397 |
-
if "," in up_lr_weight:
|
| 398 |
-
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")]
|
| 399 |
-
|
| 400 |
-
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight(
|
| 401 |
-
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0))
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
-
return down_lr_weight, mid_lr_weight, up_lr_weight
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
def create_network(
|
| 408 |
-
multiplier: float,
|
| 409 |
-
network_dim: Optional[int],
|
| 410 |
-
network_alpha: Optional[float],
|
| 411 |
-
vae: AutoencoderKL,
|
| 412 |
-
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
|
| 413 |
-
unet,
|
| 414 |
-
neuron_dropout: Optional[float] = None,
|
| 415 |
-
**kwargs,
|
| 416 |
-
):
|
| 417 |
-
if network_dim is None:
|
| 418 |
-
network_dim = 4 # default
|
| 419 |
-
if network_alpha is None:
|
| 420 |
-
network_alpha = 1.0
|
| 421 |
-
|
| 422 |
-
# extract dim/alpha for conv2d, and block dim
|
| 423 |
-
conv_dim = kwargs.get("conv_dim", None)
|
| 424 |
-
conv_alpha = kwargs.get("conv_alpha", None)
|
| 425 |
-
if conv_dim is not None:
|
| 426 |
-
conv_dim = int(conv_dim)
|
| 427 |
-
if conv_alpha is None:
|
| 428 |
-
conv_alpha = 1.0
|
| 429 |
-
else:
|
| 430 |
-
conv_alpha = float(conv_alpha)
|
| 431 |
-
|
| 432 |
-
# block dim/alpha/lr
|
| 433 |
-
block_dims = kwargs.get("block_dims", None)
|
| 434 |
-
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
|
| 435 |
-
|
| 436 |
-
# 以上のいずれかに指定があればblockごとのdim(rank)を有効にする
|
| 437 |
-
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None:
|
| 438 |
-
block_alphas = kwargs.get("block_alphas", None)
|
| 439 |
-
conv_block_dims = kwargs.get("conv_block_dims", None)
|
| 440 |
-
conv_block_alphas = kwargs.get("conv_block_alphas", None)
|
| 441 |
-
|
| 442 |
-
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas(
|
| 443 |
-
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
# remove block dim/alpha without learning rate
|
| 447 |
-
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas(
|
| 448 |
-
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
|
| 449 |
-
)
|
| 450 |
-
|
| 451 |
-
else:
|
| 452 |
-
block_alphas = None
|
| 453 |
-
conv_block_dims = None
|
| 454 |
-
conv_block_alphas = None
|
| 455 |
-
|
| 456 |
-
# rank/module dropout
|
| 457 |
-
rank_dropout = kwargs.get("rank_dropout", None)
|
| 458 |
-
if rank_dropout is not None:
|
| 459 |
-
rank_dropout = float(rank_dropout)
|
| 460 |
-
module_dropout = kwargs.get("module_dropout", None)
|
| 461 |
-
if module_dropout is not None:
|
| 462 |
-
module_dropout = float(module_dropout)
|
| 463 |
-
|
| 464 |
-
# すごく引数が多いな ( ^ω^)・・・
|
| 465 |
-
network = LoRANetwork(
|
| 466 |
-
text_encoder,
|
| 467 |
-
unet,
|
| 468 |
-
multiplier=multiplier,
|
| 469 |
-
lora_dim=network_dim,
|
| 470 |
-
alpha=network_alpha,
|
| 471 |
-
dropout=neuron_dropout,
|
| 472 |
-
rank_dropout=rank_dropout,
|
| 473 |
-
module_dropout=module_dropout,
|
| 474 |
-
conv_lora_dim=conv_dim,
|
| 475 |
-
conv_alpha=conv_alpha,
|
| 476 |
-
block_dims=block_dims,
|
| 477 |
-
block_alphas=block_alphas,
|
| 478 |
-
conv_block_dims=conv_block_dims,
|
| 479 |
-
conv_block_alphas=conv_block_alphas,
|
| 480 |
-
varbose=True,
|
| 481 |
-
)
|
| 482 |
-
|
| 483 |
-
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
|
| 484 |
-
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
|
| 485 |
-
|
| 486 |
-
return network
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
# このメソッドは外部から呼び出される可能性を考慮しておく
|
| 490 |
-
# network_dim, network_alpha にはデフォルト値が入っている。
|
| 491 |
-
# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている
|
| 492 |
-
# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている
|
| 493 |
-
def get_block_dims_and_alphas(
|
| 494 |
-
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
|
| 495 |
-
):
|
| 496 |
-
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1
|
| 497 |
-
|
| 498 |
-
def parse_ints(s):
|
| 499 |
-
return [int(i) for i in s.split(",")]
|
| 500 |
-
|
| 501 |
-
def parse_floats(s):
|
| 502 |
-
return [float(i) for i in s.split(",")]
|
| 503 |
-
|
| 504 |
-
# block_dimsとblock_alphasをパースする。必ず値が入る
|
| 505 |
-
if block_dims is not None:
|
| 506 |
-
block_dims = parse_ints(block_dims)
|
| 507 |
-
assert (
|
| 508 |
-
len(block_dims) == num_total_blocks
|
| 509 |
-
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください"
|
| 510 |
-
else:
|
| 511 |
-
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります")
|
| 512 |
-
block_dims = [network_dim] * num_total_blocks
|
| 513 |
-
|
| 514 |
-
if block_alphas is not None:
|
| 515 |
-
block_alphas = parse_floats(block_alphas)
|
| 516 |
-
assert (
|
| 517 |
-
len(block_alphas) == num_total_blocks
|
| 518 |
-
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください"
|
| 519 |
-
else:
|
| 520 |
-
print(
|
| 521 |
-
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります"
|
| 522 |
-
)
|
| 523 |
-
block_alphas = [network_alpha] * num_total_blocks
|
| 524 |
-
|
| 525 |
-
# conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う
|
| 526 |
-
if conv_block_dims is not None:
|
| 527 |
-
conv_block_dims = parse_ints(conv_block_dims)
|
| 528 |
-
assert (
|
| 529 |
-
len(conv_block_dims) == num_total_blocks
|
| 530 |
-
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください"
|
| 531 |
-
|
| 532 |
-
if conv_block_alphas is not None:
|
| 533 |
-
conv_block_alphas = parse_floats(conv_block_alphas)
|
| 534 |
-
assert (
|
| 535 |
-
len(conv_block_alphas) == num_total_blocks
|
| 536 |
-
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください"
|
| 537 |
-
else:
|
| 538 |
-
if conv_alpha is None:
|
| 539 |
-
conv_alpha = 1.0
|
| 540 |
-
print(
|
| 541 |
-
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります"
|
| 542 |
-
)
|
| 543 |
-
conv_block_alphas = [conv_alpha] * num_total_blocks
|
| 544 |
-
else:
|
| 545 |
-
if conv_dim is not None:
|
| 546 |
-
print(
|
| 547 |
-
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります"
|
| 548 |
-
)
|
| 549 |
-
conv_block_dims = [conv_dim] * num_total_blocks
|
| 550 |
-
conv_block_alphas = [conv_alpha] * num_total_blocks
|
| 551 |
-
else:
|
| 552 |
-
conv_block_dims = None
|
| 553 |
-
conv_block_alphas = None
|
| 554 |
-
|
| 555 |
-
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく
|
| 559 |
-
def get_block_lr_weight(
|
| 560 |
-
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold
|
| 561 |
-
) -> Tuple[List[float], List[float], List[float]]:
|
| 562 |
-
# パラメータ未指定時は何もせず、今までと同じ動作とする
|
| 563 |
-
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None:
|
| 564 |
-
return None, None, None
|
| 565 |
-
|
| 566 |
-
max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数
|
| 567 |
-
|
| 568 |
-
def get_list(name_with_suffix) -> List[float]:
|
| 569 |
-
import math
|
| 570 |
-
|
| 571 |
-
tokens = name_with_suffix.split("+")
|
| 572 |
-
name = tokens[0]
|
| 573 |
-
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0
|
| 574 |
-
|
| 575 |
-
if name == "cosine":
|
| 576 |
-
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))]
|
| 577 |
-
elif name == "sine":
|
| 578 |
-
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)]
|
| 579 |
-
elif name == "linear":
|
| 580 |
-
return [i / (max_len - 1) + base_lr for i in range(max_len)]
|
| 581 |
-
elif name == "reverse_linear":
|
| 582 |
-
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))]
|
| 583 |
-
elif name == "zeros":
|
| 584 |
-
return [0.0 + base_lr] * max_len
|
| 585 |
-
else:
|
| 586 |
-
print(
|
| 587 |
-
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros"
|
| 588 |
-
% (name)
|
| 589 |
-
)
|
| 590 |
-
return None
|
| 591 |
-
|
| 592 |
-
if type(down_lr_weight) == str:
|
| 593 |
-
down_lr_weight = get_list(down_lr_weight)
|
| 594 |
-
if type(up_lr_weight) == str:
|
| 595 |
-
up_lr_weight = get_list(up_lr_weight)
|
| 596 |
-
|
| 597 |
-
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len):
|
| 598 |
-
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len)
|
| 599 |
-
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len)
|
| 600 |
-
up_lr_weight = up_lr_weight[:max_len]
|
| 601 |
-
down_lr_weight = down_lr_weight[:max_len]
|
| 602 |
-
|
| 603 |
-
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len):
|
| 604 |
-
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len)
|
| 605 |
-
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len)
|
| 606 |
-
|
| 607 |
-
if down_lr_weight != None and len(down_lr_weight) < max_len:
|
| 608 |
-
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight))
|
| 609 |
-
if up_lr_weight != None and len(up_lr_weight) < max_len:
|
| 610 |
-
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight))
|
| 611 |
-
|
| 612 |
-
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None):
|
| 613 |
-
print("apply block learning rate / 階層別学習���を適用します。")
|
| 614 |
-
if down_lr_weight != None:
|
| 615 |
-
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight]
|
| 616 |
-
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight)
|
| 617 |
-
else:
|
| 618 |
-
print("down_lr_weight: all 1.0, すべて1.0")
|
| 619 |
-
|
| 620 |
-
if mid_lr_weight != None:
|
| 621 |
-
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0
|
| 622 |
-
print("mid_lr_weight:", mid_lr_weight)
|
| 623 |
-
else:
|
| 624 |
-
print("mid_lr_weight: 1.0")
|
| 625 |
-
|
| 626 |
-
if up_lr_weight != None:
|
| 627 |
-
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight]
|
| 628 |
-
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight)
|
| 629 |
-
else:
|
| 630 |
-
print("up_lr_weight: all 1.0, すべて1.0")
|
| 631 |
-
|
| 632 |
-
return down_lr_weight, mid_lr_weight, up_lr_weight
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく
|
| 636 |
-
def remove_block_dims_and_alphas(
|
| 637 |
-
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
|
| 638 |
-
):
|
| 639 |
-
# set 0 to block dim without learning rate to remove the block
|
| 640 |
-
if down_lr_weight != None:
|
| 641 |
-
for i, lr in enumerate(down_lr_weight):
|
| 642 |
-
if lr == 0:
|
| 643 |
-
block_dims[i] = 0
|
| 644 |
-
if conv_block_dims is not None:
|
| 645 |
-
conv_block_dims[i] = 0
|
| 646 |
-
if mid_lr_weight != None:
|
| 647 |
-
if mid_lr_weight == 0:
|
| 648 |
-
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
|
| 649 |
-
if conv_block_dims is not None:
|
| 650 |
-
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
|
| 651 |
-
if up_lr_weight != None:
|
| 652 |
-
for i, lr in enumerate(up_lr_weight):
|
| 653 |
-
if lr == 0:
|
| 654 |
-
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
|
| 655 |
-
if conv_block_dims is not None:
|
| 656 |
-
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
|
| 657 |
-
|
| 658 |
-
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
# 外部から呼び出す可能性を考慮しておく
|
| 662 |
-
def get_block_index(lora_name: str) -> int:
|
| 663 |
-
block_idx = -1 # invalid lora name
|
| 664 |
-
|
| 665 |
-
m = RE_UPDOWN.search(lora_name)
|
| 666 |
-
if m:
|
| 667 |
-
g = m.groups()
|
| 668 |
-
i = int(g[1])
|
| 669 |
-
j = int(g[3])
|
| 670 |
-
if g[2] == "resnets":
|
| 671 |
-
idx = 3 * i + j
|
| 672 |
-
elif g[2] == "attentions":
|
| 673 |
-
idx = 3 * i + j
|
| 674 |
-
elif g[2] == "upsamplers" or g[2] == "downsamplers":
|
| 675 |
-
idx = 3 * i + 2
|
| 676 |
-
|
| 677 |
-
if g[0] == "down":
|
| 678 |
-
block_idx = 1 + idx # 0に該当するLoRAは存在しない
|
| 679 |
-
elif g[0] == "up":
|
| 680 |
-
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx
|
| 681 |
-
|
| 682 |
-
elif "mid_block_" in lora_name:
|
| 683 |
-
block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12
|
| 684 |
-
|
| 685 |
-
return block_idx
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
# Create network from weights for inference, weights are not loaded here (because can be merged)
|
| 689 |
-
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
|
| 690 |
-
if weights_sd is None:
|
| 691 |
-
if os.path.splitext(file)[1] == ".safetensors":
|
| 692 |
-
from safetensors.torch import load_file, safe_open
|
| 693 |
-
|
| 694 |
-
weights_sd = load_file(file)
|
| 695 |
-
else:
|
| 696 |
-
weights_sd = torch.load(file, map_location="cpu")
|
| 697 |
-
|
| 698 |
-
# get dim/alpha mapping
|
| 699 |
-
modules_dim = {}
|
| 700 |
-
modules_alpha = {}
|
| 701 |
-
for key, value in weights_sd.items():
|
| 702 |
-
if "." not in key:
|
| 703 |
-
continue
|
| 704 |
-
|
| 705 |
-
lora_name = key.split(".")[0]
|
| 706 |
-
if "alpha" in key:
|
| 707 |
-
modules_alpha[lora_name] = value
|
| 708 |
-
elif "lora_down" in key:
|
| 709 |
-
dim = value.size()[0]
|
| 710 |
-
modules_dim[lora_name] = dim
|
| 711 |
-
# print(lora_name, value.size(), dim)
|
| 712 |
-
|
| 713 |
-
# support old LoRA without alpha
|
| 714 |
-
for key in modules_dim.keys():
|
| 715 |
-
if key not in modules_alpha:
|
| 716 |
-
modules_alpha[key] = modules_dim[key]
|
| 717 |
-
|
| 718 |
-
module_class = LoRAInfModule if for_inference else LoRAModule
|
| 719 |
-
|
| 720 |
-
network = LoRANetwork(
|
| 721 |
-
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
|
| 722 |
-
)
|
| 723 |
-
|
| 724 |
-
# block lr
|
| 725 |
-
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
|
| 726 |
-
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
|
| 727 |
-
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
|
| 728 |
-
|
| 729 |
-
return network, weights_sd
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
class LoRANetwork(torch.nn.Module):
|
| 733 |
-
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
|
| 734 |
-
|
| 735 |
-
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
|
| 736 |
-
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
| 737 |
-
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
|
| 738 |
-
LORA_PREFIX_UNET = "lora_unet"
|
| 739 |
-
LORA_PREFIX_TEXT_ENCODER = "lora_te"
|
| 740 |
-
|
| 741 |
-
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
|
| 742 |
-
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
|
| 743 |
-
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
|
| 744 |
-
|
| 745 |
-
def __init__(
|
| 746 |
-
self,
|
| 747 |
-
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
|
| 748 |
-
unet,
|
| 749 |
multiplier: float = 1.0,
|
| 750 |
lora_dim: int = 4,
|
| 751 |
-
alpha: float =
|
| 752 |
dropout: Optional[float] = None,
|
| 753 |
rank_dropout: Optional[float] = None,
|
| 754 |
module_dropout: Optional[float] = None,
|
| 755 |
-
|
| 756 |
-
conv_alpha: Optional[float] = None,
|
| 757 |
-
block_dims: Optional[List[int]] = None,
|
| 758 |
-
block_alphas: Optional[List[float]] = None,
|
| 759 |
-
conv_block_dims: Optional[List[int]] = None,
|
| 760 |
-
conv_block_alphas: Optional[List[float]] = None,
|
| 761 |
-
modules_dim: Optional[Dict[str, int]] = None,
|
| 762 |
-
modules_alpha: Optional[Dict[str, int]] = None,
|
| 763 |
-
module_class: Type[object] = LoRAModule,
|
| 764 |
-
varbose: Optional[bool] = False,
|
| 765 |
-
) -> None:
|
| 766 |
"""
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
|
|
|
|
|
|
|
|
|
| 773 |
"""
|
| 774 |
super().__init__()
|
|
|
|
| 775 |
self.multiplier = multiplier
|
| 776 |
-
|
| 777 |
self.lora_dim = lora_dim
|
| 778 |
-
self.alpha = alpha
|
| 779 |
-
self.conv_lora_dim = conv_lora_dim
|
| 780 |
-
self.conv_alpha = conv_alpha
|
| 781 |
self.dropout = dropout
|
| 782 |
self.rank_dropout = rank_dropout
|
| 783 |
self.module_dropout = module_dropout
|
| 784 |
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
|
| 790 |
-
print(f"block_dims: {block_dims}")
|
| 791 |
-
print(f"block_alphas: {block_alphas}")
|
| 792 |
-
if conv_block_dims is not None:
|
| 793 |
-
print(f"conv_block_dims: {conv_block_dims}")
|
| 794 |
-
print(f"conv_block_alphas: {conv_block_alphas}")
|
| 795 |
-
else:
|
| 796 |
-
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
|
| 797 |
-
print(f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
|
| 798 |
-
if self.conv_lora_dim is not None:
|
| 799 |
-
print(f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
|
| 800 |
-
|
| 801 |
-
# create module instances
|
| 802 |
-
def create_modules(
|
| 803 |
-
is_unet: bool,
|
| 804 |
-
text_encoder_idx: Optional[int], # None, 1, 2
|
| 805 |
-
root_module: torch.nn.Module,
|
| 806 |
-
target_replace_modules: List[torch.nn.Module],
|
| 807 |
-
) -> List[LoRAModule]:
|
| 808 |
-
prefix = (
|
| 809 |
-
self.LORA_PREFIX_UNET
|
| 810 |
-
if is_unet
|
| 811 |
-
else (
|
| 812 |
-
self.LORA_PREFIX_TEXT_ENCODER
|
| 813 |
-
if text_encoder_idx is None
|
| 814 |
-
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
|
| 815 |
-
)
|
| 816 |
-
)
|
| 817 |
-
loras = []
|
| 818 |
-
skipped = []
|
| 819 |
-
for name, module in root_module.named_modules():
|
| 820 |
-
if module.__class__.__name__ in target_replace_modules:
|
| 821 |
-
for child_name, child_module in module.named_modules():
|
| 822 |
-
is_linear = child_module.__class__.__name__ == "Linear"
|
| 823 |
-
is_conv2d = child_module.__class__.__name__ == "Conv2d"
|
| 824 |
-
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
| 825 |
-
|
| 826 |
-
if is_linear or is_conv2d:
|
| 827 |
-
lora_name = prefix + "." + name + "." + child_name
|
| 828 |
-
lora_name = lora_name.replace(".", "_")
|
| 829 |
-
|
| 830 |
-
dim = None
|
| 831 |
-
alpha = None
|
| 832 |
-
|
| 833 |
-
if modules_dim is not None:
|
| 834 |
-
# モジュール指定あり
|
| 835 |
-
if lora_name in modules_dim:
|
| 836 |
-
dim = modules_dim[lora_name]
|
| 837 |
-
alpha = modules_alpha[lora_name]
|
| 838 |
-
elif is_unet and block_dims is not None:
|
| 839 |
-
# U-Netでblock_dims指定あり
|
| 840 |
-
block_idx = get_block_index(lora_name)
|
| 841 |
-
if is_linear or is_conv2d_1x1:
|
| 842 |
-
dim = block_dims[block_idx]
|
| 843 |
-
alpha = block_alphas[block_idx]
|
| 844 |
-
elif conv_block_dims is not None:
|
| 845 |
-
dim = conv_block_dims[block_idx]
|
| 846 |
-
alpha = conv_block_alphas[block_idx]
|
| 847 |
-
else:
|
| 848 |
-
# 通常、すべて対象とする
|
| 849 |
-
if is_linear or is_conv2d_1x1:
|
| 850 |
-
dim = self.lora_dim
|
| 851 |
-
alpha = self.alpha
|
| 852 |
-
elif self.conv_lora_dim is not None:
|
| 853 |
-
dim = self.conv_lora_dim
|
| 854 |
-
alpha = self.conv_alpha
|
| 855 |
-
|
| 856 |
-
if dim is None or dim == 0:
|
| 857 |
-
# skipした情報を出力
|
| 858 |
-
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None):
|
| 859 |
-
skipped.append(lora_name)
|
| 860 |
-
continue
|
| 861 |
-
|
| 862 |
-
lora = module_class(
|
| 863 |
-
lora_name,
|
| 864 |
-
child_module,
|
| 865 |
-
self.multiplier,
|
| 866 |
-
dim,
|
| 867 |
-
alpha,
|
| 868 |
-
dropout=dropout,
|
| 869 |
-
rank_dropout=rank_dropout,
|
| 870 |
-
module_dropout=module_dropout,
|
| 871 |
-
)
|
| 872 |
-
loras.append(lora)
|
| 873 |
-
return loras, skipped
|
| 874 |
-
|
| 875 |
-
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
|
| 876 |
-
print(text_encoders)
|
| 877 |
-
# create LoRA for text encoder
|
| 878 |
-
# 毎回すべてのモジュールを作るのは無駄なので要検討
|
| 879 |
-
self.text_encoder_loras = []
|
| 880 |
-
skipped_te = []
|
| 881 |
-
for i, text_encoder in enumerate(text_encoders):
|
| 882 |
-
if len(text_encoders) > 1:
|
| 883 |
-
index = i + 1
|
| 884 |
-
print(f"create LoRA for Text Encoder {index}:")
|
| 885 |
-
else:
|
| 886 |
-
index = None
|
| 887 |
-
print(f"create LoRA for Text Encoder:")
|
| 888 |
-
|
| 889 |
-
print(text_encoder)
|
| 890 |
-
text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
| 891 |
-
self.text_encoder_loras.extend(text_encoder_loras)
|
| 892 |
-
skipped_te += skipped
|
| 893 |
-
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
| 894 |
-
|
| 895 |
-
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
|
| 896 |
-
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
| 897 |
-
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
|
| 898 |
-
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
| 899 |
-
|
| 900 |
-
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
|
| 901 |
-
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
| 902 |
|
| 903 |
-
|
| 904 |
-
if
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
)
|
| 908 |
-
for name in skipped:
|
| 909 |
-
print(f"\t{name}")
|
| 910 |
-
|
| 911 |
-
self.up_lr_weight: List[float] = None
|
| 912 |
-
self.down_lr_weight: List[float] = None
|
| 913 |
-
self.mid_lr_weight: float = None
|
| 914 |
-
self.block_lr = False
|
| 915 |
-
|
| 916 |
-
# assertion
|
| 917 |
-
names = set()
|
| 918 |
-
for lora in self.text_encoder_loras + self.unet_loras:
|
| 919 |
-
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
| 920 |
-
names.add(lora.lora_name)
|
| 921 |
-
|
| 922 |
-
def set_multiplier(self, multiplier):
|
| 923 |
-
self.multiplier = multiplier
|
| 924 |
-
for lora in self.text_encoder_loras + self.unet_loras:
|
| 925 |
-
lora.multiplier = self.multiplier
|
| 926 |
-
|
| 927 |
-
def load_weights(self, file):
|
| 928 |
-
if os.path.splitext(file)[1] == ".safetensors":
|
| 929 |
-
from safetensors.torch import load_file
|
| 930 |
-
|
| 931 |
-
weights_sd = load_file(file)
|
| 932 |
-
else:
|
| 933 |
-
weights_sd = torch.load(file, map_location="cpu")
|
| 934 |
-
info = self.load_state_dict(weights_sd, False)
|
| 935 |
-
return info
|
| 936 |
-
|
| 937 |
-
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
|
| 938 |
-
if apply_text_encoder:
|
| 939 |
-
print("enable LoRA for text encoder")
|
| 940 |
-
else:
|
| 941 |
-
self.text_encoder_loras = []
|
| 942 |
-
|
| 943 |
-
if apply_unet:
|
| 944 |
-
print("enable LoRA for U-Net")
|
| 945 |
-
else:
|
| 946 |
-
self.unet_loras = []
|
| 947 |
-
|
| 948 |
-
for lora in self.text_encoder_loras + self.unet_loras:
|
| 949 |
-
lora.apply_to()
|
| 950 |
-
self.add_module(lora.lora_name, lora)
|
| 951 |
-
|
| 952 |
-
# マージできるかどうかを返す
|
| 953 |
-
def is_mergeable(self):
|
| 954 |
-
return True
|
| 955 |
-
|
| 956 |
-
# TODO refactor to common function with apply_to
|
| 957 |
-
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
|
| 958 |
-
apply_text_encoder = apply_unet = False
|
| 959 |
-
for key in weights_sd.keys():
|
| 960 |
-
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
| 961 |
-
apply_text_encoder = True
|
| 962 |
-
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
| 963 |
-
apply_unet = True
|
| 964 |
-
|
| 965 |
-
if apply_text_encoder:
|
| 966 |
-
print("enable LoRA for text encoder")
|
| 967 |
-
else:
|
| 968 |
-
self.text_encoder_loras = []
|
| 969 |
-
|
| 970 |
-
if apply_unet:
|
| 971 |
-
print("enable LoRA for U-Net")
|
| 972 |
-
else:
|
| 973 |
-
self.unet_loras = []
|
| 974 |
-
|
| 975 |
-
for lora in self.text_encoder_loras + self.unet_loras:
|
| 976 |
-
sd_for_lora = {}
|
| 977 |
-
for key in weights_sd.keys():
|
| 978 |
-
if key.startswith(lora.lora_name):
|
| 979 |
-
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
|
| 980 |
-
lora.merge_to(sd_for_lora, dtype, device)
|
| 981 |
-
|
| 982 |
-
print(f"weights are merged")
|
| 983 |
-
|
| 984 |
-
# 層別学習率用に層ごとの学習率に対する倍率を定義する 引数の順番が逆だがとりあえず気にしない
|
| 985 |
-
def set_block_lr_weight(
|
| 986 |
-
self,
|
| 987 |
-
up_lr_weight: List[float] = None,
|
| 988 |
-
mid_lr_weight: float = None,
|
| 989 |
-
down_lr_weight: List[float] = None,
|
| 990 |
-
):
|
| 991 |
-
self.block_lr = True
|
| 992 |
-
self.down_lr_weight = down_lr_weight
|
| 993 |
-
self.mid_lr_weight = mid_lr_weight
|
| 994 |
-
self.up_lr_weight = up_lr_weight
|
| 995 |
-
|
| 996 |
-
def get_lr_weight(self, lora: LoRAModule) -> float:
|
| 997 |
-
lr_weight = 1.0
|
| 998 |
-
block_idx = get_block_index(lora.lora_name)
|
| 999 |
-
if block_idx < 0:
|
| 1000 |
-
return lr_weight
|
| 1001 |
-
|
| 1002 |
-
if block_idx < LoRANetwork.NUM_OF_BLOCKS:
|
| 1003 |
-
if self.down_lr_weight != None:
|
| 1004 |
-
lr_weight = self.down_lr_weight[block_idx]
|
| 1005 |
-
elif block_idx == LoRANetwork.NUM_OF_BLOCKS:
|
| 1006 |
-
if self.mid_lr_weight != None:
|
| 1007 |
-
lr_weight = self.mid_lr_weight
|
| 1008 |
-
elif block_idx > LoRANetwork.NUM_OF_BLOCKS:
|
| 1009 |
-
if self.up_lr_weight != None:
|
| 1010 |
-
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1]
|
| 1011 |
-
|
| 1012 |
-
return lr_weight
|
| 1013 |
-
|
| 1014 |
-
# 二つのText Encoderに別々の学習率を設定できるようにするといいかも
|
| 1015 |
-
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
|
| 1016 |
-
self.requires_grad_(True)
|
| 1017 |
-
all_params = []
|
| 1018 |
-
|
| 1019 |
-
def enumerate_params(loras):
|
| 1020 |
-
params = []
|
| 1021 |
-
for lora in loras:
|
| 1022 |
-
params.extend(lora.parameters())
|
| 1023 |
-
return params
|
| 1024 |
-
|
| 1025 |
-
if self.text_encoder_loras:
|
| 1026 |
-
param_data = {"params": enumerate_params(self.text_encoder_loras)}
|
| 1027 |
-
if text_encoder_lr is not None:
|
| 1028 |
-
param_data["lr"] = text_encoder_lr
|
| 1029 |
-
all_params.append(param_data)
|
| 1030 |
-
|
| 1031 |
-
if self.unet_loras:
|
| 1032 |
-
if self.block_lr:
|
| 1033 |
-
# 学習率のグラフをblockごとにしたいので、blockごとにloraを分類
|
| 1034 |
-
block_idx_to_lora = {}
|
| 1035 |
-
for lora in self.unet_loras:
|
| 1036 |
-
idx = get_block_index(lora.lora_name)
|
| 1037 |
-
if idx not in block_idx_to_lora:
|
| 1038 |
-
block_idx_to_lora[idx] = []
|
| 1039 |
-
block_idx_to_lora[idx].append(lora)
|
| 1040 |
-
|
| 1041 |
-
# blockごとにパラメータを設定する
|
| 1042 |
-
for idx, block_loras in block_idx_to_lora.items():
|
| 1043 |
-
param_data = {"params": enumerate_params(block_loras)}
|
| 1044 |
-
|
| 1045 |
-
if unet_lr is not None:
|
| 1046 |
-
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0])
|
| 1047 |
-
elif default_lr is not None:
|
| 1048 |
-
param_data["lr"] = default_lr * self.get_lr_weight(block_loras[0])
|
| 1049 |
-
if ("lr" in param_data) and (param_data["lr"] == 0):
|
| 1050 |
-
continue
|
| 1051 |
-
all_params.append(param_data)
|
| 1052 |
-
|
| 1053 |
-
else:
|
| 1054 |
-
param_data = {"params": enumerate_params(self.unet_loras)}
|
| 1055 |
-
if unet_lr is not None:
|
| 1056 |
-
param_data["lr"] = unet_lr
|
| 1057 |
-
all_params.append(param_data)
|
| 1058 |
-
|
| 1059 |
-
return all_params
|
| 1060 |
-
|
| 1061 |
-
def enable_gradient_checkpointing(self):
|
| 1062 |
-
# not supported
|
| 1063 |
-
pass
|
| 1064 |
-
|
| 1065 |
-
def prepare_grad_etc(self, text_encoder, unet):
|
| 1066 |
-
self.requires_grad_(True)
|
| 1067 |
-
|
| 1068 |
-
def on_epoch_start(self, text_encoder, unet):
|
| 1069 |
-
self.train()
|
| 1070 |
-
|
| 1071 |
-
def get_trainable_params(self):
|
| 1072 |
-
return self.parameters()
|
| 1073 |
-
|
| 1074 |
-
def save_weights(self, file, dtype, metadata):
|
| 1075 |
-
if metadata is not None and len(metadata) == 0:
|
| 1076 |
-
metadata = None
|
| 1077 |
-
|
| 1078 |
-
state_dict = self.state_dict()
|
| 1079 |
-
|
| 1080 |
-
if dtype is not None:
|
| 1081 |
-
for key in list(state_dict.keys()):
|
| 1082 |
-
v = state_dict[key]
|
| 1083 |
-
v = v.detach().clone().to("cpu").to(dtype)
|
| 1084 |
-
state_dict[key] = v
|
| 1085 |
-
|
| 1086 |
-
if os.path.splitext(file)[1] == ".safetensors":
|
| 1087 |
-
from safetensors.torch import save_file
|
| 1088 |
-
from library import train_util
|
| 1089 |
-
|
| 1090 |
-
# Precalculate model hashes to save time on indexing
|
| 1091 |
-
if metadata is None:
|
| 1092 |
-
metadata = {}
|
| 1093 |
-
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
|
| 1094 |
-
metadata["sshs_model_hash"] = model_hash
|
| 1095 |
-
metadata["sshs_legacy_hash"] = legacy_hash
|
| 1096 |
-
|
| 1097 |
-
save_file(state_dict, file, metadata)
|
| 1098 |
else:
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
# mask is a tensor with values from 0 to 1
|
| 1102 |
-
def set_region(self, sub_prompt_index, is_last_network, mask):
|
| 1103 |
-
if mask.max() == 0:
|
| 1104 |
-
mask = torch.ones_like(mask)
|
| 1105 |
-
|
| 1106 |
-
self.mask = mask
|
| 1107 |
-
self.sub_prompt_index = sub_prompt_index
|
| 1108 |
-
self.is_last_network = is_last_network
|
| 1109 |
-
|
| 1110 |
-
for lora in self.text_encoder_loras + self.unet_loras:
|
| 1111 |
-
lora.set_network(self)
|
| 1112 |
|
| 1113 |
-
|
| 1114 |
-
self.
|
| 1115 |
-
self.
|
| 1116 |
-
self.current_size = (height, width)
|
| 1117 |
-
self.shared = shared
|
| 1118 |
|
| 1119 |
-
#
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
|
| 1123 |
-
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight
|
| 1124 |
-
dtype = ref_weight.dtype
|
| 1125 |
-
device = ref_weight.device
|
| 1126 |
|
| 1127 |
-
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
m = m.to(device, dtype=dtype)
|
| 1131 |
-
mask_dic[mh * mw] = m
|
| 1132 |
|
| 1133 |
-
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
|
| 1138 |
-
resize_add(h + h % 2, w + w % 2)
|
| 1139 |
-
h = (h + 1) // 2
|
| 1140 |
-
w = (w + 1) // 2
|
| 1141 |
-
|
| 1142 |
-
self.mask_dic = mask_dic
|
| 1143 |
-
|
| 1144 |
-
def backup_weights(self):
|
| 1145 |
-
# 重みのバックアップを行う
|
| 1146 |
-
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
| 1147 |
-
for lora in loras:
|
| 1148 |
-
org_module = lora.org_module_ref[0]
|
| 1149 |
-
if not hasattr(org_module, "_lora_org_weight"):
|
| 1150 |
-
sd = org_module.state_dict()
|
| 1151 |
-
org_module._lora_org_weight = sd["weight"].detach().clone()
|
| 1152 |
-
org_module._lora_restored = True
|
| 1153 |
-
|
| 1154 |
-
def restore_weights(self):
|
| 1155 |
-
# 重みのリストアを行う
|
| 1156 |
-
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
| 1157 |
-
for lora in loras:
|
| 1158 |
-
org_module = lora.org_module_ref[0]
|
| 1159 |
-
if not org_module._lora_restored:
|
| 1160 |
-
sd = org_module.state_dict()
|
| 1161 |
-
sd["weight"] = org_module._lora_org_weight
|
| 1162 |
-
org_module.load_state_dict(sd)
|
| 1163 |
-
org_module._lora_restored = True
|
| 1164 |
-
|
| 1165 |
-
def pre_calculation(self):
|
| 1166 |
-
# 事前計算を行う
|
| 1167 |
-
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
| 1168 |
-
for lora in loras:
|
| 1169 |
-
org_module = lora.org_module_ref[0]
|
| 1170 |
-
sd = org_module.state_dict()
|
| 1171 |
-
|
| 1172 |
-
org_weight = sd["weight"]
|
| 1173 |
-
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
|
| 1174 |
-
sd["weight"] = org_weight + lora_weight
|
| 1175 |
-
assert sd["weight"].shape == org_weight.shape
|
| 1176 |
-
org_module.load_state_dict(sd)
|
| 1177 |
-
|
| 1178 |
-
org_module._lora_restored = False
|
| 1179 |
-
lora.enabled = False
|
| 1180 |
-
|
| 1181 |
-
def apply_max_norm_regularization(self, max_norm_value, device):
|
| 1182 |
-
downkeys = []
|
| 1183 |
-
upkeys = []
|
| 1184 |
-
alphakeys = []
|
| 1185 |
-
norms = []
|
| 1186 |
-
keys_scaled = 0
|
| 1187 |
-
|
| 1188 |
-
state_dict = self.state_dict()
|
| 1189 |
-
for key in state_dict.keys():
|
| 1190 |
-
if "lora_down" in key and "weight" in key:
|
| 1191 |
-
downkeys.append(key)
|
| 1192 |
-
upkeys.append(key.replace("lora_down", "lora_up"))
|
| 1193 |
-
alphakeys.append(key.replace("lora_down.weight", "alpha"))
|
| 1194 |
|
| 1195 |
-
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
|
| 1202 |
-
|
| 1203 |
-
|
| 1204 |
-
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
|
| 1205 |
-
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
|
| 1206 |
-
else:
|
| 1207 |
-
updown = up @ down
|
| 1208 |
|
| 1209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1210 |
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
ratio = desired.cpu() / norm.cpu()
|
| 1214 |
-
sqrt_ratio = ratio**0.5
|
| 1215 |
-
if ratio != 1:
|
| 1216 |
-
keys_scaled += 1
|
| 1217 |
-
state_dict[upkeys[i]] *= sqrt_ratio
|
| 1218 |
-
state_dict[downkeys[i]] *= sqrt_ratio
|
| 1219 |
-
scalednorm = updown.norm() * ratio
|
| 1220 |
-
norms.append(scalednorm.item())
|
| 1221 |
|
| 1222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
class LoRAModule(nn.Module):
|
|
|
|
| 7 |
"""
|
| 8 |
+
LoRA module that replaces the forward method of an original Linear or Conv2D module.
|
| 9 |
"""
|
| 10 |
|
| 11 |
def __init__(
|
| 12 |
self,
|
| 13 |
+
lora_name: str,
|
| 14 |
+
org_module: nn.Module,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
multiplier: float = 1.0,
|
| 16 |
lora_dim: int = 4,
|
| 17 |
+
alpha: Optional[float] = None,
|
| 18 |
dropout: Optional[float] = None,
|
| 19 |
rank_dropout: Optional[float] = None,
|
| 20 |
module_dropout: Optional[float] = None,
|
| 21 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"""
|
| 23 |
+
Args:
|
| 24 |
+
lora_name (str): Name of the LoRA module.
|
| 25 |
+
org_module (nn.Module): The original module to wrap.
|
| 26 |
+
multiplier (float): Scaling factor for the LoRA output.
|
| 27 |
+
lora_dim (int): The rank of the LoRA decomposition.
|
| 28 |
+
alpha (float, optional): Scaling factor for LoRA weights. Defaults to lora_dim.
|
| 29 |
+
dropout (float, optional): Dropout probability. Defaults to None.
|
| 30 |
+
rank_dropout (float, optional): Dropout probability for rank reduction. Defaults to None.
|
| 31 |
+
module_dropout (float, optional): Probability of completely dropping the module during training. Defaults to None.
|
| 32 |
"""
|
| 33 |
super().__init__()
|
| 34 |
+
self.lora_name = lora_name
|
| 35 |
self.multiplier = multiplier
|
|
|
|
| 36 |
self.lora_dim = lora_dim
|
|
|
|
|
|
|
|
|
|
| 37 |
self.dropout = dropout
|
| 38 |
self.rank_dropout = rank_dropout
|
| 39 |
self.module_dropout = module_dropout
|
| 40 |
|
| 41 |
+
# Determine layer type (Linear or Conv2D)
|
| 42 |
+
is_conv2d = isinstance(org_module, nn.Conv2d)
|
| 43 |
+
in_dim = org_module.in_channels if is_conv2d else org_module.in_features
|
| 44 |
+
out_dim = org_module.out_channels if is_conv2d else org_module.out_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Define LoRA layers
|
| 47 |
+
if is_conv2d:
|
| 48 |
+
self.lora_down = nn.Conv2d(in_dim, lora_dim, kernel_size=org_module.kernel_size,
|
| 49 |
+
stride=org_module.stride, padding=org_module.padding, bias=False)
|
| 50 |
+
self.lora_up = nn.Conv2d(lora_dim, out_dim, kernel_size=1, stride=1, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
+
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False)
|
| 53 |
+
self.lora_up = nn.Linear(lora_dim, out_dim, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Initialize weights
|
| 56 |
+
nn.init.xavier_uniform_(self.lora_down.weight)
|
| 57 |
+
nn.init.zeros_(self.lora_up.weight)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# Set alpha scaling factor
|
| 60 |
+
self.scale = (alpha if alpha is not None else lora_dim) / lora_dim
|
| 61 |
+
self.register_buffer("alpha", torch.tensor(self.scale, dtype=torch.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
# Store reference to the original module
|
| 64 |
+
self.org_module = org_module
|
| 65 |
+
self.org_forward = org_module.forward
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
def apply_to(self):
|
| 68 |
+
"""Replace the forward method of the original module with this module's forward method."""
|
| 69 |
+
self.org_module.forward = self.forward
|
| 70 |
+
del self.org_module
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
"""
|
| 74 |
+
Forward pass for LoRA-enhanced module.
|
| 75 |
+
"""
|
| 76 |
+
if self.module_dropout and self.training and torch.rand(1).item() < self.module_dropout:
|
| 77 |
+
return self.org_forward(x)
|
| 78 |
|
| 79 |
+
# Compute LoRA down projection
|
| 80 |
+
lora_output = self.lora_down(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Apply dropout if training
|
| 83 |
+
if self.training:
|
| 84 |
+
if self.dropout:
|
| 85 |
+
lora_output = F.dropout(lora_output, p=self.dropout)
|
| 86 |
+
if self.rank_dropout:
|
| 87 |
+
dropout_mask = torch.rand_like(lora_output) > self.rank_dropout
|
| 88 |
+
lora_output *= dropout_mask
|
| 89 |
+
scale_factor = 1.0 / (1.0 - self.rank_dropout)
|
| 90 |
+
lora_output *= scale_factor
|
| 91 |
|
| 92 |
+
# Compute LoRA up projection
|
| 93 |
+
lora_output = self.lora_up(lora_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
# Combine with original output
|
| 96 |
+
return self.org_forward(x) + lora_output * self.multiplier * self.scale
|