Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import cv2 | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
from diffusers import StableDiffusionXLControlNetImg2ImgPipeline | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.models import ControlNetModel | |
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput | |
from diffusers.utils import deprecate, logging, replace_example_docstring | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version | |
logger = logging.get_logger(__name__) # Initialize logger | |
# Check for xformers availability | |
try: | |
import xformers | |
import xformers.ops | |
xformers_available = True | |
except ImportError: | |
xformers_available = False | |
def reshape_tensor(x: torch.Tensor, heads: int) -> torch.Tensor: | |
"""Reshapes tensor for multi-head attention processing.""" | |
bs, length, width = x.shape | |
return x.view(bs, length, heads, -1).transpose(1, 2) | |
class PerceiverAttention(nn.Module): | |
def __init__(self, dim: int, dim_head: int = 64, heads: int = 8): | |
super().__init__() | |
self.scale = dim_head**-0.5 | |
self.dim_head = dim_head | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) | |
self.to_out = nn.Linear(inner_dim, dim, bias=False) | |
def forward(self, x: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: | |
x, latents = self.norm1(x), self.norm2(latents) | |
q, kv = self.to_q(latents), self.to_kv(torch.cat((x, latents), dim=1)) | |
k, v = kv.chunk(2, dim=-1) | |
q, k, v = map(lambda t: reshape_tensor(t, self.heads), (q, k, v)) | |
# Scaled dot-product attention | |
scale = 1 / math.sqrt(math.sqrt(self.dim_head)) | |
weight = (q * scale) @ (k * scale).transpose(-2, -1) | |
weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype) | |
out = weight @ v | |
return self.to_out(out.permute(0, 2, 1, 3).reshape(latents.shape[0], latents.shape[1], -1)) | |
class Resampler(nn.Module): | |
def __init__( | |
self, | |
dim: int = 1024, | |
depth: int = 8, | |
dim_head: int = 64, | |
heads: int = 16, | |
num_queries: int = 8, | |
embedding_dim: int = 768, | |
output_dim: int = 1024, | |
ff_mult: int = 4, | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / math.sqrt(dim)) | |
self.proj_in = nn.Linear(embedding_dim, dim) | |
self.proj_out = nn.Linear(dim, output_dim) | |
self.norm_out = nn.LayerNorm(output_dim) | |
self.layers = nn.ModuleList([nn.ModuleList([PerceiverAttention(dim, dim_head, heads), nn.LayerNorm(dim)]) for _ in range(depth)]) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
latents = self.latents.expand(x.size(0), -1, -1) | |
x = self.proj_in(x) | |
for attn, norm in self.layers: | |
latents = norm(attn(x, latents) + latents) | |
return self.norm_out(self.proj_out(latents)) | |
class StableDiffusionXLInstantIDImg2ImgPipeline(StableDiffusionXLControlNetImg2ImgPipeline): | |
def cuda(self, dtype: torch.dtype = torch.float16, use_xformers: bool = False): | |
self.to("cuda", dtype) | |
if hasattr(self, "image_proj_model"): | |
self.image_proj_model.to(self.unet.device).to(self.unet.dtype) | |
if use_xformers: | |
if is_xformers_available(): | |
self.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xFormers is not available. Ensure it is installed correctly.") | |
def load_ip_adapter_instantid(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16, scale: float = 0.5): | |
self.set_image_proj_model(model_ckpt, image_emb_dim, num_tokens) | |
self.set_ip_adapter(model_ckpt, num_tokens, scale) | |
def set_image_proj_model(self, model_ckpt: str, image_emb_dim: int = 512, num_tokens: int = 16): | |
self.image_proj_model = Resampler( | |
dim=1280, depth=4, dim_head=64, heads=20, num_queries=num_tokens, embedding_dim=image_emb_dim, output_dim=self.unet.config.cross_attention_dim | |
).to(self.device, dtype=self.dtype).eval() | |
state_dict = torch.load(model_ckpt, map_location="cpu").get("image_proj", torch.load(model_ckpt, map_location="cpu")) | |
self.image_proj_model.load_state_dict(state_dict) | |
self.image_proj_model_in_features = image_emb_dim | |
def set_ip_adapter(self, model_ckpt: str, num_tokens: int, scale: float): | |
attn_procs = {} | |
for name, module in self.unet.attn_processors.items(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim | |
hidden_size = self.unet.config.block_out_channels[{"mid_block": -1, "up_blocks": int(name[9]), "down_blocks": int(name[12])}[name.split(".")[0]]] | |
attn_procs[name] = (IPAttnProcessor(hidden_size, cross_attention_dim, scale, num_tokens) | |
if cross_attention_dim else nn.Identity()).to(self.unet.device, dtype=self.unet.dtype) | |
self.unet.set_attn_processor(attn_procs) | |
self.unet.attn_processors.load_state_dict(torch.load(model_ckpt, map_location="cpu").get("ip_adapter", torch.load(model_ckpt, map_location="cpu"))) | |
def _encode_prompt_image_emb(self, prompt_image_emb, device, dtype, do_classifier_free_guidance): | |
prompt_image_emb = torch.tensor(prompt_image_emb) if not isinstance(prompt_image_emb, torch.Tensor) else prompt_image_emb.clone().detach() | |
prompt_image_emb = prompt_image_emb.to(device, dtype=dtype).reshape([1, -1, self.image_proj_model_in_features]) | |
if do_classifier_free_guidance: | |
prompt_image_emb = torch.cat([torch.zeros_like(prompt_image_emb), prompt_image_emb], dim=0) | |
return self.image_proj_model.to(device)(prompt_image_emb) | |