Spaces:
Running
Running
"""Test MyScale functionality.""" | |
import pytest | |
from langchain.docstore.document import Document | |
from langchain.vectorstores import MyScale, MyScaleSettings | |
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings | |
def test_myscale() -> None: | |
"""Test end to end construction and search.""" | |
texts = ["foo", "bar", "baz"] | |
config = MyScaleSettings() | |
config.table = "test_myscale" | |
docsearch = MyScale.from_texts(texts, FakeEmbeddings(), config=config) | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"_dummy": 0})] | |
docsearch.drop() | |
async def test_myscale_async() -> None: | |
"""Test end to end construction and search.""" | |
texts = ["foo", "bar", "baz"] | |
config = MyScaleSettings() | |
config.table = "test_myscale_async" | |
docsearch = MyScale.from_texts( | |
texts=texts, embedding=FakeEmbeddings(), config=config | |
) | |
output = await docsearch.asimilarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"_dummy": 0})] | |
docsearch.drop() | |
def test_myscale_with_metadatas() -> None: | |
"""Test end to end construction and search.""" | |
texts = ["foo", "bar", "baz"] | |
metadatas = [{"page": str(i)} for i in range(len(texts))] | |
config = MyScaleSettings() | |
config.table = "test_myscale_with_metadatas" | |
docsearch = MyScale.from_texts( | |
texts=texts, | |
embedding=FakeEmbeddings(), | |
config=config, | |
metadatas=metadatas, | |
) | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"page": "0"})] | |
docsearch.drop() | |
def test_myscale_with_metadatas_with_relevance_scores() -> None: | |
"""Test end to end construction and scored search.""" | |
texts = ["foo", "bar", "baz"] | |
metadatas = [{"page": str(i)} for i in range(len(texts))] | |
config = MyScaleSettings() | |
config.table = "test_myscale_with_metadatas_with_relevance_scores" | |
docsearch = MyScale.from_texts( | |
texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config | |
) | |
output = docsearch.similarity_search_with_relevance_scores("foo", k=1) | |
assert output[0][0] == Document(page_content="foo", metadata={"page": "0"}) | |
docsearch.drop() | |
def test_myscale_search_filter() -> None: | |
"""Test end to end construction and search with metadata filtering.""" | |
texts = ["far", "bar", "baz"] | |
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts] | |
config = MyScaleSettings() | |
config.table = "test_myscale_search_filter" | |
docsearch = MyScale.from_texts( | |
texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config | |
) | |
output = docsearch.similarity_search( | |
"far", k=1, where_str=f"{docsearch.metadata_column}.first_letter='f'" | |
) | |
assert output == [Document(page_content="far", metadata={"first_letter": "f"})] | |
output = docsearch.similarity_search( | |
"bar", k=1, where_str=f"{docsearch.metadata_column}.first_letter='b'" | |
) | |
assert output == [Document(page_content="bar", metadata={"first_letter": "b"})] | |
docsearch.drop() | |
def test_myscale_with_persistence() -> None: | |
"""Test end to end construction and search, with persistence.""" | |
config = MyScaleSettings() | |
config.table = "test_myscale_with_persistence" | |
texts = [ | |
"foo", | |
"bar", | |
"baz", | |
] | |
docsearch = MyScale.from_texts( | |
texts=texts, embedding=FakeEmbeddings(), config=config | |
) | |
output = docsearch.similarity_search("foo", k=1) | |
assert output == [Document(page_content="foo", metadata={"_dummy": 0})] | |
# Get a new VectorStore with same config | |
# it will reuse the table spontaneously | |
# unless you drop it | |
docsearch = MyScale(embedding=FakeEmbeddings(), config=config) | |
output = docsearch.similarity_search("foo", k=1) | |
# Clean up | |
docsearch.drop() | |