File size: 3,966 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""Test MyScale functionality."""
import pytest

from langchain.docstore.document import Document
from langchain.vectorstores import MyScale, MyScaleSettings
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings


def test_myscale() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    config = MyScaleSettings()
    config.table = "test_myscale"
    docsearch = MyScale.from_texts(texts, FakeEmbeddings(), config=config)
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"_dummy": 0})]
    docsearch.drop()


@pytest.mark.asyncio
async def test_myscale_async() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    config = MyScaleSettings()
    config.table = "test_myscale_async"
    docsearch = MyScale.from_texts(
        texts=texts, embedding=FakeEmbeddings(), config=config
    )
    output = await docsearch.asimilarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"_dummy": 0})]
    docsearch.drop()


def test_myscale_with_metadatas() -> None:
    """Test end to end construction and search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": str(i)} for i in range(len(texts))]
    config = MyScaleSettings()
    config.table = "test_myscale_with_metadatas"
    docsearch = MyScale.from_texts(
        texts=texts,
        embedding=FakeEmbeddings(),
        config=config,
        metadatas=metadatas,
    )
    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"page": "0"})]
    docsearch.drop()


def test_myscale_with_metadatas_with_relevance_scores() -> None:
    """Test end to end construction and scored search."""
    texts = ["foo", "bar", "baz"]
    metadatas = [{"page": str(i)} for i in range(len(texts))]
    config = MyScaleSettings()
    config.table = "test_myscale_with_metadatas_with_relevance_scores"
    docsearch = MyScale.from_texts(
        texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config
    )
    output = docsearch.similarity_search_with_relevance_scores("foo", k=1)
    assert output[0][0] == Document(page_content="foo", metadata={"page": "0"})
    docsearch.drop()


def test_myscale_search_filter() -> None:
    """Test end to end construction and search with metadata filtering."""
    texts = ["far", "bar", "baz"]
    metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
    config = MyScaleSettings()
    config.table = "test_myscale_search_filter"
    docsearch = MyScale.from_texts(
        texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config
    )
    output = docsearch.similarity_search(
        "far", k=1, where_str=f"{docsearch.metadata_column}.first_letter='f'"
    )
    assert output == [Document(page_content="far", metadata={"first_letter": "f"})]
    output = docsearch.similarity_search(
        "bar", k=1, where_str=f"{docsearch.metadata_column}.first_letter='b'"
    )
    assert output == [Document(page_content="bar", metadata={"first_letter": "b"})]
    docsearch.drop()


def test_myscale_with_persistence() -> None:
    """Test end to end construction and search, with persistence."""
    config = MyScaleSettings()
    config.table = "test_myscale_with_persistence"
    texts = [
        "foo",
        "bar",
        "baz",
    ]
    docsearch = MyScale.from_texts(
        texts=texts, embedding=FakeEmbeddings(), config=config
    )

    output = docsearch.similarity_search("foo", k=1)
    assert output == [Document(page_content="foo", metadata={"_dummy": 0})]

    # Get a new VectorStore with same config
    # it will reuse the table spontaneously
    # unless you drop it
    docsearch = MyScale(embedding=FakeEmbeddings(), config=config)
    output = docsearch.similarity_search("foo", k=1)

    # Clean up
    docsearch.drop()