Spaces:
Running
Running
# Redis | |
This page covers how to use the [Redis](https://redis.com) ecosystem within LangChain. | |
It is broken into two parts: installation and setup, and then references to specific Redis wrappers. | |
## Installation and Setup | |
- Install the Redis Python SDK with `pip install redis` | |
## Wrappers | |
### Cache | |
The Cache wrapper allows for [Redis](https://redis.io) to be used as a remote, low-latency, in-memory cache for LLM prompts and responses. | |
#### Standard Cache | |
The standard cache is the Redis bread & butter of use case in production for both [open source](https://redis.io) and [enterprise](https://redis.com) users globally. | |
To import this cache: | |
```python | |
from langchain.cache import RedisCache | |
``` | |
To use this cache with your LLMs: | |
```python | |
import langchain | |
import redis | |
redis_client = redis.Redis.from_url(...) | |
langchain.llm_cache = RedisCache(redis_client) | |
``` | |
#### Semantic Cache | |
Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends Redis as both a cache and a vectorstore. | |
To import this cache: | |
```python | |
from langchain.cache import RedisSemanticCache | |
``` | |
To use this cache with your LLMs: | |
```python | |
import langchain | |
import redis | |
# use any embedding provider... | |
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings | |
redis_url = "redis://localhost:6379" | |
langchain.llm_cache = RedisSemanticCache( | |
embedding=FakeEmbeddings(), | |
redis_url=redis_url | |
) | |
``` | |
### VectorStore | |
The vectorstore wrapper turns Redis into a low-latency [vector database](https://redis.com/solutions/use-cases/vector-database/) for semantic search or LLM content retrieval. | |
To import this vectorstore: | |
```python | |
from langchain.vectorstores import Redis | |
``` | |
For a more detailed walkthrough of the Redis vectorstore wrapper, see [this notebook](../modules/indexes/vectorstores/examples/redis.ipynb). | |
### Retriever | |
The Redis vector store retriever wrapper generalizes the vectorstore class to perform low-latency document retrieval. To create the retriever, simply call `.as_retriever()` on the base vectorstore class. | |
### Memory | |
Redis can be used to persist LLM conversations. | |
#### Vector Store Retriever Memory | |
For a more detailed walkthrough of the `VectorStoreRetrieverMemory` wrapper, see [this notebook](../modules/memory/types/vectorstore_retriever_memory.ipynb). | |
#### Chat Message History Memory | |
For a detailed example of Redis to cache conversation message history, see [this notebook](../modules/memory/examples/redis_chat_message_history.ipynb). | |