Spaces:
Running
Running
# Modal | |
This page covers how to use the Modal ecosystem within LangChain. | |
It is broken into two parts: installation and setup, and then references to specific Modal wrappers. | |
## Installation and Setup | |
- Install with `pip install modal-client` | |
- Run `modal token new` | |
## Define your Modal Functions and Webhooks | |
You must include a prompt. There is a rigid response structure. | |
```python | |
class Item(BaseModel): | |
prompt: str | |
@stub.webhook(method="POST") | |
def my_webhook(item: Item): | |
return {"prompt": my_function.call(item.prompt)} | |
``` | |
An example with GPT2: | |
```python | |
from pydantic import BaseModel | |
import modal | |
stub = modal.Stub("example-get-started") | |
volume = modal.SharedVolume().persist("gpt2_model_vol") | |
CACHE_PATH = "/root/model_cache" | |
@stub.function( | |
gpu="any", | |
image=modal.Image.debian_slim().pip_install( | |
"tokenizers", "transformers", "torch", "accelerate" | |
), | |
shared_volumes={CACHE_PATH: volume}, | |
retries=3, | |
) | |
def run_gpt2(text: str): | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
encoded_input = tokenizer(text, return_tensors='pt').input_ids | |
output = model.generate(encoded_input, max_length=50, do_sample=True) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
class Item(BaseModel): | |
prompt: str | |
@stub.webhook(method="POST") | |
def get_text(item: Item): | |
return {"prompt": run_gpt2.call(item.prompt)} | |
``` | |
## Wrappers | |
### LLM | |
There exists an Modal LLM wrapper, which you can access with | |
```python | |
from langchain.llms import Modal | |
``` |