Spaces:
Running
Running
File size: 12,425 Bytes
c268c45 bb7225b e222dff c268c45 877593a c268c45 a54671e d68fdb5 a54671e c4d7d0b f998e73 c4d7d0b 634ebde c4d7d0b 6fd0d30 c4d7d0b 634ebde c4d7d0b 4076aec c268c45 0b4fb1b c268c45 634ebde d478d08 d345eca d478d08 a54671e d345eca 01376f1 d345eca 01376f1 877593a 01376f1 d345eca eb90bce d345eca eb90bce d345eca 38af778 d345eca 4076aec d345eca 4076aec d345eca 4076aec d345eca 877593a d345eca 38af778 d345eca 38af778 d345eca 4076aec d345eca 4076aec 877593a 4076aec d345eca 4076aec 877593a 4076aec d345eca 4076aec eb90bce 4076aec 877593a 4076aec 38af778 4076aec 877593a 4076aec 38af778 4076aec 877593a 4076aec 877593a 4076aec d345eca 4076aec d345eca 877593a d345eca a54671e d345eca a54671e d345eca a54671e d345eca 23bda7a d345eca ec674f6 d345eca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import time
import json
import requests
import streamlit as st
import os
from urllib.parse import urlencode, urlparse, parse_qs
st.set_page_config(page_title="IntelliChat - Trợ lý AI văn bản pháp luật Việt Nam", page_icon="./app/static/IntelliChat.png", layout="centered", initial_sidebar_state="collapsed")
# ==== MÔI TRƯỜNG OAuth ====
FB_APP_ID = os.getenv("FB_APP_ID")
FB_APP_SECRET = os.getenv("FB_APP_SECRET")
FB_REDIRECT_URI = os.getenv("FB_REDIRECT_URI")
FB_CLIENT_URL = os.getenv("FB_CLIENT_URL", "https://www.facebook.com")
FB_API_URL = os.getenv("FB_API_URL", "https://graph.facebook.com")
FB_BACKEND_URL = os.getenv("FB_BACKEND_URL")
# ==== MODULE URL ====
routing_response_module = st.secrets["ViBidLQA_Routing_Module"]
retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"]
reranker_module = st.secrets["ViBidLQA_Rerank_Module"]
abs_QA_module = st.secrets["ViBidLQA_AQA_Module"]
url_api_question_classify_model = f"{routing_response_module}/query_classify"
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
url_api_introduce_system_model = f"{routing_response_module}/about_me"
url_api_retrieval_model = f"{retrieval_module}/search"
url_api_reranker_model = f"{reranker_module}/rerank"
url_api_generation_model = f"{abs_QA_module}/answer"
url_api_extract_reference_model = f"{routing_response_module}/extract_references_unstream"
# ========== STREAMLIT UI ==========
with open("./static/styles.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
# ==== GIAO DIỆN CHÍNH - TABS ====
# tab1, tab2 = st.tabs(["🤖 ViBidLQA Chatbot", "🔐 Facebook OAuth"])
# =============================
# TAB 1: VIBIDLQA CHATBOT
# =============================
# with tab1:
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc - sinh viên năm cuối ngành Khoa học Máy tính tại trường Đại học Sư phạm Kỹ thuật Hưng Yên. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}]
# st.markdown(f"""
# <div class=logo_area>
# <img src="./app/static/IntelliChat.png"/>
# </div>
# """, unsafe_allow_html=True)
# st.markdown("<h2 style='text-align: center;'>ViBidLQA</h2>", unsafe_allow_html=True)
def classify_question(question):
data = {
"question": question
}
response = requests.post(url_api_question_classify_model, json=data)
if response.status_code == 200:
print(response)
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def introduce_system(question):
data = {
"question": question
}
response = requests.post(url_api_introduce_system_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def response_unrelated_question(question):
data = {
"question": question
}
response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def retrieve_context(question, top_k=10):
data = {
"query": question,
"top_k": top_k
}
response = requests.post(url_api_retrieval_model, json=data)
if response.status_code == 200:
results = response.json()["results"]
return results
else:
return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}"
def rerank_context(url_rerank_module, question, relevant_docs, top_k=5):
data = {
"question": question,
"relevant_docs": relevant_docs,
"top_k": top_k
}
response = requests.post(url_rerank_module, json=data)
if response.status_code == 200:
results = response.json()["reranked_docs"]
return results
else:
return f"Lỗi tại Rerank module: {response.status_code} - {response.text}"
def get_abstractive_answer(context, question):
data = {
"context": context,
"question": question
}
response = requests.post(url_api_generation_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def get_references(context, question, answer):
data = {
"context": context,
"question": question,
"answer": answer
}
response = requests.post(url_api_extract_reference_model, json=data)
if response.status_code == 200:
return response.json()["refs"]
else:
return f"Lỗi tại module Reference Extractor: {response.status_code} - {response.text}"
def generate_text_effect(answer):
words = answer.split()
for i in range(len(words)):
time.sleep(0.03)
yield " ".join(words[:i+1])
for message in st.session_state.messages:
if message['role'] == 'assistant':
avatar_class = "assistant-avatar"
message_class = "assistant-message"
avatar = './app/static/IntelliChat.png'
else:
avatar_class = ""
message_class = "user-message"
avatar = ''
st.markdown(f"""
<div class="{message_class}">
<img src="{avatar}" class="{avatar_class}" />
<div class="stMarkdown">{message['content']}</div>
</div>
""", unsafe_allow_html=True)
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
st.markdown(f"""
<div class="user-message">
<div class="stMarkdown">{prompt}</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'user', 'content': prompt})
message_placeholder = st.empty()
full_response = ""
classify_result = classify_question(question=prompt).json()
print(f"The type of user query: {classify_result}")
if classify_result == "BIDDING_RELATED":
retrieved_context = retrieve_context(question=prompt, top_k=10)
retrieved_context = [item['text'] for item in retrieved_context]
reranked_context = rerank_context(url_rerank_module=url_api_reranker_model,
question=prompt,
relevant_docs=retrieved_context,
top_k=5)[0]
abs_answer = get_abstractive_answer(context=reranked_context, question=prompt)
if isinstance(abs_answer, str):
full_response = abs_answer
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}</div>
</div>
""", unsafe_allow_html=True)
else:
full_response = ""
for line in abs_answer.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data_str = line[6:]
if data_str == '[DONE]':
break
try:
data = json.loads(data_str)
token = data.get('token', '')
full_response += token
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
except json.JSONDecodeError:
pass
refs = st.expander("Tài liệu tham khảo", expanded=False)
refs_list = get_references(context=reranked_context, question=prompt, answer=full_response)
print(refs_list)
refs.write(f"{refs_list}")
elif classify_result == "ABOUT_CHATBOT":
answer = introduce_system(question=prompt)
if isinstance(answer, str):
full_response = answer
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}</div>
</div>
""", unsafe_allow_html=True)
else:
full_response = ""
for line in answer.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data_str = line[6:]
if data_str == '[DONE]':
break
try:
data = json.loads(data_str)
token = data.get('token', '')
full_response += token
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
except json.JSONDecodeError:
pass
else:
answer = response_unrelated_question(question=prompt)
if isinstance(answer, str):
full_response = answer
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}</div>
</div>
""", unsafe_allow_html=True)
else:
full_response = ""
for line in answer.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data_str = line[6:]
if data_str == '[DONE]':
break
try:
data = json.loads(data_str)
token = data.get('token', '')
full_response += token
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
except json.JSONDecodeError:
pass
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/IntelliChat.png" class="assistant-avatar" />
<div class="stMarkdown">
{full_response}
</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'assistant', 'content': full_response})
# =============================
# TAB 2: FACEBOOK OAUTH
# =============================
# with tab2:
# st.title("Đăng nhập Facebook để lấy Page Access Token")
# # Tạo link login
# login_url = f"{FB_BACKEND_URL}/facebook/login"
# st.markdown(f"[👉 Bấm vào đây để đăng nhập Facebook]({login_url})")
# st.info("Sau khi đăng nhập xong, bạn có thể quay lại ứng dụng này. Thông tin page đã được in ra ở backend.") |