Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,19 @@ import json
|
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
|
6 |
-
st.set_page_config(page_title="ViBidLQA - Trợ lý AI
|
7 |
|
8 |
routing_response_module = st.secrets["ViBidLQA_Routing_Module"]
|
9 |
retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"]
|
10 |
ext_QA_module = st.secrets["ViBidLQA_EQA_Module"]
|
11 |
abs_QA_module = st.secrets["ViBidLQA_AQA_Module"]
|
12 |
|
|
|
13 |
url_api_question_classify_model = f"{routing_response_module}/query_classify"
|
14 |
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
|
15 |
-
|
16 |
url_api_retrieval_model = f"{retrieval_module}/search"
|
17 |
-
|
18 |
url_api_generation_model = f"{abs_QA_module}/answer"
|
19 |
|
20 |
with open("./static/styles.css") as f:
|
@@ -30,14 +31,6 @@ st.markdown(f"""
|
|
30 |
""", unsafe_allow_html=True)
|
31 |
st.markdown("<h2 style='text-align: center;'>ViBidLQA</h2>", unsafe_allow_html=True)
|
32 |
|
33 |
-
answering_method = st.sidebar.selectbox(options=['Extraction', 'Generation'], label='Chọn mô hình trả lời câu hỏi:', index=0)
|
34 |
-
|
35 |
-
if answering_method == 'Generation':
|
36 |
-
print('Switched to generative model...')
|
37 |
-
|
38 |
-
if answering_method == 'Extraction':
|
39 |
-
print('Switched to extraction model...')
|
40 |
-
|
41 |
def classify_question(question):
|
42 |
data = {
|
43 |
"question": question
|
@@ -85,16 +78,36 @@ def retrieve_context(question, top_k=10):
|
|
85 |
|
86 |
if response.status_code == 200:
|
87 |
results = response.json()["results"]
|
88 |
-
|
89 |
-
return results[0]["text"]
|
90 |
else:
|
91 |
-
return f"Lỗi: {response.status_code} - {response.text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def get_abstractive_answer(question):
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
data = {
|
97 |
-
"context":
|
98 |
"question": question
|
99 |
}
|
100 |
|
@@ -111,35 +124,15 @@ def generate_text_effect(answer):
|
|
111 |
time.sleep(0.03)
|
112 |
yield " ".join(words[:i+1])
|
113 |
|
114 |
-
def get_extractive_answer(question, stride=20, max_length=256, n_best=50, max_answer_length=512):
|
115 |
-
context = retrieve_context(question=question)
|
116 |
-
|
117 |
-
data = {
|
118 |
-
"context": context,
|
119 |
-
"question": question,
|
120 |
-
"stride": stride,
|
121 |
-
"max_length": max_length,
|
122 |
-
"n_best": n_best,
|
123 |
-
"max_answer_length": max_answer_length
|
124 |
-
}
|
125 |
-
|
126 |
-
response = requests.post(url_api_extraction_model, json=data)
|
127 |
-
|
128 |
-
if response.status_code == 200:
|
129 |
-
result = response.json()
|
130 |
-
return result["best_answer"]
|
131 |
-
else:
|
132 |
-
return f"Lỗi: {response.status_code} - {response.text}"
|
133 |
-
|
134 |
for message in st.session_state.messages:
|
135 |
if message['role'] == 'assistant':
|
136 |
avatar_class = "assistant-avatar"
|
137 |
message_class = "assistant-message"
|
138 |
avatar = './app/static/ai.jpg'
|
139 |
else:
|
140 |
-
avatar_class = "
|
141 |
message_class = "user-message"
|
142 |
-
avatar = '
|
143 |
st.markdown(f"""
|
144 |
<div class="{message_class}">
|
145 |
<img src="{avatar}" class="{avatar_class}" />
|
@@ -150,8 +143,7 @@ for message in st.session_state.messages:
|
|
150 |
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
|
151 |
st.markdown(f"""
|
152 |
<div class="user-message">
|
153 |
-
|
154 |
-
<div class="stMarkdown">{prompt}</div>
|
155 |
</div>
|
156 |
""", unsafe_allow_html=True)
|
157 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
@@ -159,208 +151,117 @@ if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho b
|
|
159 |
message_placeholder = st.empty()
|
160 |
|
161 |
full_response = ""
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
<
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
full_response
|
192 |
-
|
193 |
-
|
194 |
-
<div class="assistant-message">
|
195 |
-
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
196 |
-
<div class="stMarkdown">{full_response}●</div>
|
197 |
-
</div>
|
198 |
-
""", unsafe_allow_html=True)
|
199 |
-
|
200 |
-
except json.JSONDecodeError:
|
201 |
-
pass
|
202 |
-
|
203 |
-
elif classify_result == "ABOUT_CHATBOT":
|
204 |
-
answer = introduce_system(question=prompt)
|
205 |
-
|
206 |
-
if isinstance(answer, str):
|
207 |
-
full_response = answer
|
208 |
-
message_placeholder.markdown(f"""
|
209 |
-
<div class="assistant-message">
|
210 |
-
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
211 |
-
<div class="stMarkdown">{full_response}</div>
|
212 |
-
</div>
|
213 |
-
""", unsafe_allow_html=True)
|
214 |
-
else:
|
215 |
-
full_response = ""
|
216 |
-
for line in answer.iter_lines():
|
217 |
-
if line:
|
218 |
-
line = line.decode('utf-8')
|
219 |
-
if line.startswith('data: '):
|
220 |
-
data_str = line[6:]
|
221 |
-
if data_str == '[DONE]':
|
222 |
-
break
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
else:
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
if line:
|
254 |
-
line = line.decode('utf-8')
|
255 |
-
if line.startswith('data: '):
|
256 |
-
data_str = line[6:]
|
257 |
-
if data_str == '[DONE]':
|
258 |
-
break
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
full_response
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
</div>
|
270 |
-
""", unsafe_allow_html=True)
|
271 |
-
|
272 |
-
except json.JSONDecodeError:
|
273 |
-
pass
|
274 |
|
275 |
else:
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
message_placeholder.markdown(f"""
|
287 |
-
<div class="assistant-message">
|
288 |
-
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
289 |
-
<div class="stMarkdown">{full_response}●</div>
|
290 |
-
</div>
|
291 |
-
""", unsafe_allow_html=True)
|
292 |
-
elif classify_result == "ABOUT_CHATBOT":
|
293 |
-
answer = introduce_system(question=prompt)
|
294 |
-
|
295 |
-
if isinstance(answer, str):
|
296 |
-
full_response = answer
|
297 |
-
message_placeholder.markdown(f"""
|
298 |
-
<div class="assistant-message">
|
299 |
-
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
300 |
-
<div class="stMarkdown">{full_response}</div>
|
301 |
-
</div>
|
302 |
-
""", unsafe_allow_html=True)
|
303 |
-
else:
|
304 |
-
full_response = ""
|
305 |
-
for line in answer.iter_lines():
|
306 |
-
if line:
|
307 |
-
line = line.decode('utf-8')
|
308 |
-
if line.startswith('data: '):
|
309 |
-
data_str = line[6:]
|
310 |
-
if data_str == '[DONE]':
|
311 |
-
break
|
312 |
-
|
313 |
-
try:
|
314 |
-
data = json.loads(data_str)
|
315 |
-
token = data.get('token', '')
|
316 |
-
full_response += token
|
317 |
-
|
318 |
-
message_placeholder.markdown(f"""
|
319 |
-
<div class="assistant-message">
|
320 |
-
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
321 |
-
<div class="stMarkdown">{full_response}●</div>
|
322 |
-
</div>
|
323 |
-
""", unsafe_allow_html=True)
|
324 |
-
|
325 |
-
except json.JSONDecodeError:
|
326 |
-
pass
|
327 |
-
|
328 |
else:
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
if line:
|
343 |
-
line = line.decode('utf-8')
|
344 |
-
if line.startswith('data: '):
|
345 |
-
data_str = line[6:]
|
346 |
-
if data_str == '[DONE]':
|
347 |
-
break
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
full_response
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
</div>
|
359 |
-
""", unsafe_allow_html=True)
|
360 |
-
|
361 |
-
except json.JSONDecodeError:
|
362 |
-
pass
|
363 |
-
|
364 |
|
365 |
message_placeholder.markdown(f"""
|
366 |
<div class="assistant-message">
|
|
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
|
6 |
+
st.set_page_config(page_title="ViBidLQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="collapsed")
|
7 |
|
8 |
routing_response_module = st.secrets["ViBidLQA_Routing_Module"]
|
9 |
retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"]
|
10 |
ext_QA_module = st.secrets["ViBidLQA_EQA_Module"]
|
11 |
abs_QA_module = st.secrets["ViBidLQA_AQA_Module"]
|
12 |
|
13 |
+
|
14 |
url_api_question_classify_model = f"{routing_response_module}/query_classify"
|
15 |
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
|
16 |
+
url_api_introduce_system_modelff = f"{routing_response_module}/about_me"
|
17 |
url_api_retrieval_model = f"{retrieval_module}/search"
|
18 |
+
url_api_reranker_model = f"{reranker_module}/rerank"
|
19 |
url_api_generation_model = f"{abs_QA_module}/answer"
|
20 |
|
21 |
with open("./static/styles.css") as f:
|
|
|
31 |
""", unsafe_allow_html=True)
|
32 |
st.markdown("<h2 style='text-align: center;'>ViBidLQA</h2>", unsafe_allow_html=True)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def classify_question(question):
|
35 |
data = {
|
36 |
"question": question
|
|
|
78 |
|
79 |
if response.status_code == 200:
|
80 |
results = response.json()["results"]
|
81 |
+
return results
|
|
|
82 |
else:
|
83 |
+
return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}"
|
84 |
+
|
85 |
+
def rerank_context(url_rerank_module, question, relevant_docs, top_k=5):
|
86 |
+
data = {
|
87 |
+
"question": question,
|
88 |
+
"relevant_docs": relevant_docs,
|
89 |
+
"top_k": top_k
|
90 |
+
}
|
91 |
+
|
92 |
+
response = requests.post(url_rerank_module, json=data)
|
93 |
+
|
94 |
+
if response.status_code == 200:
|
95 |
+
results = response.json()["reranked_docs"]
|
96 |
+
return results
|
97 |
+
else:
|
98 |
+
return f"Lỗi tại Rerank module: {response.status_code} - {response.text}"
|
99 |
|
100 |
def get_abstractive_answer(question):
|
101 |
+
retrieved_context = retrieve_context(question=question)
|
102 |
+
retrieved_context = [item['text'] for item in retrieved_context]
|
103 |
+
|
104 |
+
reranked_context = rerank_context(url_rerank_module=url_api_reranker_model,
|
105 |
+
question=question,
|
106 |
+
relevant_docs=retrieved_context,
|
107 |
+
top_k=5)[0]
|
108 |
|
109 |
data = {
|
110 |
+
"context": reranked_context,
|
111 |
"question": question
|
112 |
}
|
113 |
|
|
|
124 |
time.sleep(0.03)
|
125 |
yield " ".join(words[:i+1])
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
for message in st.session_state.messages:
|
128 |
if message['role'] == 'assistant':
|
129 |
avatar_class = "assistant-avatar"
|
130 |
message_class = "assistant-message"
|
131 |
avatar = './app/static/ai.jpg'
|
132 |
else:
|
133 |
+
avatar_class = ""
|
134 |
message_class = "user-message"
|
135 |
+
avatar = ''
|
136 |
st.markdown(f"""
|
137 |
<div class="{message_class}">
|
138 |
<img src="{avatar}" class="{avatar_class}" />
|
|
|
143 |
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
|
144 |
st.markdown(f"""
|
145 |
<div class="user-message">
|
146 |
+
<div class="stMarkdown">{prompt}</div>
|
|
|
147 |
</div>
|
148 |
""", unsafe_allow_html=True)
|
149 |
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
|
|
151 |
message_placeholder = st.empty()
|
152 |
|
153 |
full_response = ""
|
154 |
+
classify_result = classify_question(question=prompt).json()
|
155 |
+
|
156 |
+
print(f"The type of user query: {classify_result}")
|
157 |
+
|
158 |
+
if classify_result == "BIDDING_RELATED":
|
159 |
+
abs_answer = get_abstractive_answer(question=prompt)
|
160 |
+
|
161 |
+
if isinstance(abs_answer, str):
|
162 |
+
full_response = abs_answer
|
163 |
+
message_placeholder.markdown(f"""
|
164 |
+
<div class="assistant-message">
|
165 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
166 |
+
<div class="stMarkdown">{full_response}</div>
|
167 |
+
</div>
|
168 |
+
""", unsafe_allow_html=True)
|
169 |
+
else:
|
170 |
+
full_response = ""
|
171 |
+
for line in abs_answer.iter_lines():
|
172 |
+
if line:
|
173 |
+
line = line.decode('utf-8')
|
174 |
+
if line.startswith('data: '):
|
175 |
+
data_str = line[6:]
|
176 |
+
if data_str == '[DONE]':
|
177 |
+
break
|
178 |
+
|
179 |
+
try:
|
180 |
+
data = json.loads(data_str)
|
181 |
+
token = data.get('token', '')
|
182 |
+
full_response += token
|
183 |
|
184 |
+
message_placeholder.markdown(f"""
|
185 |
+
<div class="assistant-message">
|
186 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
187 |
+
<div class="stMarkdown">{full_response}●</div>
|
188 |
+
</div>
|
189 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
except json.JSONDecodeError:
|
192 |
+
pass
|
193 |
+
|
194 |
+
elif classify_result == "ABOUT_CHATBOT":
|
195 |
+
answer = introduce_system(question=prompt)
|
196 |
+
|
197 |
+
if isinstance(answer, str):
|
198 |
+
full_response = answer
|
199 |
+
message_placeholder.markdown(f"""
|
200 |
+
<div class="assistant-message">
|
201 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
202 |
+
<div class="stMarkdown">{full_response}</div>
|
203 |
+
</div>
|
204 |
+
""", unsafe_allow_html=True)
|
|
|
205 |
else:
|
206 |
+
full_response = ""
|
207 |
+
for line in answer.iter_lines():
|
208 |
+
if line:
|
209 |
+
line = line.decode('utf-8')
|
210 |
+
if line.startswith('data: '):
|
211 |
+
data_str = line[6:]
|
212 |
+
if data_str == '[DONE]':
|
213 |
+
break
|
214 |
+
|
215 |
+
try:
|
216 |
+
data = json.loads(data_str)
|
217 |
+
token = data.get('token', '')
|
218 |
+
full_response += token
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
message_placeholder.markdown(f"""
|
221 |
+
<div class="assistant-message">
|
222 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
223 |
+
<div class="stMarkdown">{full_response}●</div>
|
224 |
+
</div>
|
225 |
+
""", unsafe_allow_html=True)
|
226 |
+
|
227 |
+
except json.JSONDecodeError:
|
228 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
else:
|
231 |
+
answer = response_unrelated_question(question=prompt)
|
232 |
+
|
233 |
+
if isinstance(answer, str):
|
234 |
+
full_response = answer
|
235 |
+
message_placeholder.markdown(f"""
|
236 |
+
<div class="assistant-message">
|
237 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
238 |
+
<div class="stMarkdown">{full_response}</div>
|
239 |
+
</div>
|
240 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
else:
|
242 |
+
full_response = ""
|
243 |
+
for line in answer.iter_lines():
|
244 |
+
if line:
|
245 |
+
line = line.decode('utf-8')
|
246 |
+
if line.startswith('data: '):
|
247 |
+
data_str = line[6:]
|
248 |
+
if data_str == '[DONE]':
|
249 |
+
break
|
250 |
+
|
251 |
+
try:
|
252 |
+
data = json.loads(data_str)
|
253 |
+
token = data.get('token', '')
|
254 |
+
full_response += token
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
|
256 |
+
message_placeholder.markdown(f"""
|
257 |
+
<div class="assistant-message">
|
258 |
+
<img src="./app/static/ai.jpg" class="assistant-avatar" />
|
259 |
+
<div class="stMarkdown">{full_response}●</div>
|
260 |
+
</div>
|
261 |
+
""", unsafe_allow_html=True)
|
262 |
+
|
263 |
+
except json.JSONDecodeError:
|
264 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
message_placeholder.markdown(f"""
|
267 |
<div class="assistant-message">
|